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AUTHORS' ABSTRACT 724

The book analyzes stochastic characteristics of the physical
parameters of the atmosphere in the lower 100 km layer based on
statistical treatment of rocket sounding data. Models of the
random components of the physical parameters of the atmosphere ‘
are developed; they are uged.in investigating the control of flight ]
?mﬂncle]motlonln-uxgearmﬁs [atmosphere. Stochastic modéls bf ]
flight vehiclie motion are examined and methods of the statistical
analysis of the scatter cof trajectories are proposed, along with
methods of evaluating the effect of atmosgpheric perturbatlonb on
flight vehicle motion and methods of the statistical optimization
of flight vehicle control systems.

The book is addressed to engineers, graduate gtudents, scien-
tific coworkers, instructors, and students at hydromgteoroleogical
and technical high educaftional institutions concérned with problems
of the physics and structure of the dense atmospheric layers and
problems of flight vehicle motion in the earth's atmosphene.
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EDITOR'S FOREWORD 74

The continuous expangion in the range of altitudes and velo-
cities of control flight vehicle has meant that the interaction
of Ilight vehicle with the ambient medium during flights in the
atmogphere is becoming ever more complex. Therefore in solving
problems of flight dynamics of controlled flight vehiecle, increas-
ingly fuller knowledge of the physical prcperties of the atmosphere
and the correlations of thelr variation is needed. Accordingly,
it became necessary to generalize, based on modern requirements,
the wealth of accumulated experimental material.

Investigationof the motion of flight vehicles in the atmo-
sphere, and especially, the solution of problems in optimizing
the contrel of flight vehicle’motion, depends not only on the
completeness of information concerning atmospheric propertics,
but increasingly on the form injwhich this information is presented.

This monograph presents atmospheric characteristics in a form
that 1s most convenient for the use of modern mathematical apparatus
in golving problems of analyzing the dynamics of flight vehicle
control and in syntheslzing the optimal control of their motion on
digital computers. In this respect, the monograph must be of great
interest to a wide range of sclentific workers, engineers, and
graduatelstudents in the field of the thecory and practice of design-
ing flight vehicle control systems. Specialist hmteor¢loglsts
may find extremely usgseful both the latest methods of solving the
most complicated problems of analyzing and synthesizing nonlinear
stochastic dynamic systems presented systematically in the monograph,
as well as a thorough presentation of material on methods of repre-
senting random oomponenchOf the thermodynamic parameters of the

atmosphere. .

Ths collaboraticn of two specialists in related fields of
science -- meteorology and flight vehicle control theory -- unques-
‘ticnably promcted a higher scientifilc level and greater applied
orientation of the monograph. All this enables one to hope that

the monograph will prove useful to a wide range of readers.
V. M. Ponomarev
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AUTHORS' FOREWORD \ i

Amcng the numerous problems arising in recent years related
to the mastery of near-ecarth space and the rapld development of |
flight vehicles, the problem of controlling flight vehicle moticn
in the dense atmospheric layers is vital.

The ana1y51s and synthesis of systems for controlling flight
vehicle moticon 1n the dense layers of the atmosphere with allowance for !
the random scatter of its physical parameters relative to their
neminal values determined by models of the standard atmosphere hasg
led to the necesgsity of solving two interrelated problems.

On the one hand, we have {he problem of determining the sta-
tistical characteristics of the random components of the physical
parameters of the dense atmospheric layers and developing models
and lorms of represgenting the resulting information.

On the other hand, we have the problem of devising methods
and algorithms for taking |account of the effect of random compo-
nents of the physical parameters]of the atmosphere when solving
the problem of analyzing the scatter of flight vehicle trajectory
and the problem of synthesizing control systems of flight vehicle
motion that provide the reQuiﬁgd precislon inj maintaining specified
flight trajectories.

Success in solving the problems|of analyzing and synthesizing
control systems of flight vehicle motlon is to a large extent
determined by the form and the precision of specifying the random
components of the physical parametersg of the atmosphere in mathe-
matical models of flight vehicle motion. Therefore in the mono-
graph presented to the reader the authors attempted to collect and
generalize extensive material of radiosonde, rocket, and radio-
meteor physical parameters of atmospheric measurements, to determine
the statistical characteristics of random components of the physical
parameters of the atmosphere, and to construct mathematical models
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for simulating these random components with analog and digital
computers as applisd to the problems of contrcl flight vehicle
flight. Great attention in the book is given to generallzing and
systematizing methods of the statistical investigation of the
control of flight vehicle motion in the dense atmospheric layers,
formulating methods of evaluating the effect components of the
physical parameters of the atmosphere have on the control process,
and prescnting methods of the numerical optimization of fligﬁt
vehicle control systems.

_ The exposition of the materlal iz addressed to the readerwiith
a Imathematical background at the level of the higher educational
institution and Tamiliar with the [undamentals of probability
theory, the theory of random functions, and automatic control
theory.

We deem 1t ourlﬂﬁasaﬁ;duty {to express our deep gratitude to
professors M. I. Yudin and Ye. P. Borisenkov, Candidate of Physico-
mathematical Schences 4. T. TIvanovskly, and Candidate of Technical
Sciences A. A. Lukashevskiy, who at various stages of the prepara-
tion of the manuscript made a number of valuable comments that
improved the book!.

The auvthors will be appreciativeﬁof readers who will find it
possible to send their critical remarks, responses, and wishes to
the Press.’
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INTRODUCTION /6

In addition to the thrust force, gravity force, and aercdynamic
forces, the motion of flight vehlcles %aircraft, helicopters,
rockets, spacecraft, and other moving objects) in the egrth's atmo—}
sphere is also affected by a large number of random actions. They
usually include fluctuations 1n engine thrust, forces assoclated
with random skewing in the installation of wings, stabilizers,
combustion chambers, and engine frame; random components of aero-
dynamic foﬁces, and so on. To a large extent, the mction of flight
vehicleg is determined by the condition of the earth's atmosphere.

The condition of the earth's atmosphere lis characterized by a
number of physical parameters, wﬂich undergo extensive variability .
under the effect of processes occurring within the atmosphere
itgelf (eyclonic and anticyeclonic activity, convective and furbulent
heat currents, and so on), and also under the effect of prdeesses
occurring in the Sun Kfluxes of electrcmagnetic and corpuscular
radiation). The state of the atmosphere is also determined by tThe
time of the year, time of the day, and latitude of the location.

These processes determine principally the condition of the
dense atmospheric layers, by which we mean the lower layers of the
stmosphere (troposphere, stratosphere, and mesosphere).

When a flight vehicle is moving in the dense atmospheric layers,
it is acted on by thrust P, force of gravity G, and aerodynamic
forces Q, Y, and Z. Let us consider’equations of the 'motion of the
mass center of a flight vehicle in the terrestrial coordinate
system. The origin of coordinates 01 of this system is fixed rela-
tive to the earth, the Oy axis is directed along the force of
gravity G, the Oyx axis is directed along flight vehicle motion,
and the 01z axis is perpendicular to the O1x and Oyy axes and is
directed s0 as to constitute a right-handed coordinate system.
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Since the aerodynamic forces depend on the direction of the
velocity veqtor'oq the flight vehicle mass center, we introduce
a twind-=axes.” coordinate system. The origin of coordinates of
this system is in ths fraft mass center. The Oxwwaxﬂs is
oriented along the velocity vector, the Oy, axis is perpendicular
tc the OXW axis and lies An the plane of longitudinal flight
vehiecle gymmetry, and the 0z, axis is oriented perpendicular to
the Oxy and Oy, axes in the right wing of the flight vehicle when
it in forward motion.

Motion of the individual parts of the flight vehicle with /T
regpect tc its mass center is determined in a body-axes coordinate
system, whose origin of coordinates also lies in its mass center,
Here the Oxp axis is directed parallel to the longitudinal flight
vehicle axis, the Oyp axis 1s perpendicular to Oxp and lieﬁ in
the plane of longitudinzl symmetry, and the Ozp axis is directed
along the right wing of the flight vehicle perpendicular to Oxy f
and Qyy.

Equations of feorce equilibrium in projections onto the axls
of the wind-axes coordinate system are of the form:

m%= Pceosacosf —Q-—-Gsind;

(1)

nw% = Psina+Y — Geosd:

al, 1
cosOm'v?EWz Peosasinl — Z.

Here m 1s flight vehicle mass; v is flight vehicle velocity;?@ is
the angle of inclination of velocity vector to the horizon; y . is
the - wind-axes i yaw angle (angle between the projection of vewocity
vector onto the plane of the horizon and the O1x axis}; a is the
angle of attack (angle between projectlon of flight vehicle velo-
clty vector onto the longitudinal plare of symmetry ypxp, and the
longitudinal axis); and B 1s the slip angle (angle between velocity
vecter and its projection onto the longitudinal plane of symmetry);

WTh o A
s Ty

R

. 13
.S L
L Q=C.588 0 s

1
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are the projections of the aerodynamic forces on the axez of the
body-axes coordinate system, Cys and C, are the aerodynamic
coefficients; q = jpv /é is Lhe Ve¥001ty head; v, 1s air speed
of the fligh%t vehlcle, p is density of air; and S is the charac-
teristic dimension to which the coefficients are referred|

Alr speed v, 1s determined by the velocity of the flight
vehlicle and the projections of windf velocity along the meridian
and parallel {(u and v), and also by the projection of wind velo-
city w along the vertiecal. '

The eqguations of motion of the flight vehicle mass center
can be written as:

dx = zcosh e \

T TV COsSYCOs 'T‘lh'b

dy

-7 = vsing; s (3)
.__2: =_ /] ] -

3 = Cos bsin ‘T‘w

The gystems of equations (1) and (3) describe the motion of the

- flight vehicle mass center in the earth- based coordinate system.
From Egs. {(2) it follows that the aerodynamlc forces are deter-
mined by the density of air p. The aerodynamic coefficlents C,,
Cy, and C,, for near-sonic, sonlc, and supersonle [flight vehicle
ve1001tles, depend on the angle of attack « and slip angle B,

M number, and the Reynolds number Re:

: (4)

C,=C, (s, B, M, Re)
Cz = Cz(’l, B, M» RE:);
M= Re=‘f?",

where 1 is the length of the flight vehicle, v iz the dynamie
viscosity of alr, and v, 1s the speed of sound 1in alr.

The Sbeéd}of sound 1is determined 1in terms of the character-
istic of the unperturbed flow by _the formula
a=VERT, |

where k 13 the ratio of specifiic heat oapac1t1es‘ R is the gas
constant of air, and T is the absolute temperature of the unper-
turbed flow.

Summing up the forecgoing and considering the relationship
between temperafture, pressure, and density of alir, it can be noted

ix



that the motion of a fiight vehicle in dense atmospheric layers
is determined by the thermodynamlc parameters of the air (density,
pressure, and temperature) and by the wind.

When calculating the trajectories of flight vehicles in dense
atmospheric layers, use 1s made of the standard atmosphere {the
SA-04 standard atmosphere is adopted in the USSR for altitudes to
+200,000 m).

However, actual trajectories fas a rule differ.widely
from calculated trajectories. One reason for this is the devia-
tions in the actual state of atmospheric parameters (T, p, and p }
from the values {Tgt, Pat pst) adopted in the model:

Ap-:p pst
Ap=p—
& P 9_51/: .

There are three directions which can be pursued in allowing
for the effect of the atmosphere on [light vehicle motion. The
first of these is to use the actual distribution of the physical
parameters of the atmosphere. Essentially it is the most effec-
tilve approach, however at the presenttmme&mﬁaare]not yet available
methods of determining the state of the atmospheric parameters
with the reguired pr60151om qnd oompletepess for a specified time.

The second direction involves determining the values of the

physical paramsters of thelatmosphere by using hydrodynamic models.

Unfortunately, these models have not yet been developed for the
stratosphere and mesosphere owing to the very great difficulties
of' mathematically describing the processes occurring therein,
while exlsting hydrodynamic medels capable of precalculating the
temperature and pregsurs fields in the troposphere de not thus
far provide the required preclsion.

Finally, the third direction proposes using the statistical
characteristics of the physical parameters of the atmosphere;
essentially it amounts to the following. As we know, the motion
of a flight vehicle 1is described in the general case by a system:
of nonlinear differential equations, whose right sides include
the external random perturbations, including atmospheric pertur-
bations. If the sftatistical characteristics of the atmospheric
perturbations are known, various methods of statistical analysis

of dynamlc systems make it poasible to determine the oharacteristlcs

of the scatter of flight vehicle trajectorieg in the dense atmo-
spheric layers.



The foregoing applies fully to problems of controlling space
flights. In this case the statistical characteristics of fluctua-
tions in the physical parameters of the atmosphere are used in
solving the problems of optimizing flight control systems and
predicting the state of the atmosphere for control purposes. In
this monograph, the authors place their emphasis precisely on
this third direction.

The monograph consists of two parts that are interrclated,
but al the same time have a certain autcnomy. This autonomy lies
in the fact that results ,presented in the two parts of the
mongraph can be used in solving other problem unrelated to the
particular problem merely under study here.

The -first—part-ineludes -the Lirst four chapters of the book
dealing with the atmosphere proper. Chapter One examines theé”
temperature regime and the distribution of pressure and density
of air in the dense atmospheric layer, briefly analyzes the causes
regponsible for_pa?ticular changes in these physical parameters
of the atmospherse, and indicates the limits of posailble varliaticns
in these parameters. The wind regime in the troposphere, strato-
sphere, and masosphere 1s the subject of the second chapter.
Chapter Three contains infeoermation on the vertiezl statistical
structure of the temperature, pressure, air density, and wind
fields in the dense atmospheric layers. The numerous statistical
characteristics given in this chapfer were obtalined for two groups
of latitudes based opn data of American rocket sounding. They are
analyzed in detail and evalusted from the standpoint of their
statistical significance.

Chapter Four is a bridge connecting the structure of fields
of physical parameters of the atmosphere with questions of the
statistical analysis of dynamic systems and the synthesis of
controls. It examines several statistical models of the physical
parametersg of the atmosphere. The theoretical conclusions con-
tained in the chapter are extensively illustrated with specific
examples of models of temperature, air den51ty, and wind veloclty
compornents.

The second part of the book consists of the four last chapters
and expounds methods of the statistical investigation of the con-
trol of flight vehicle motion in the dense atmospheric layers
degeribed by nonlilinear differential equations.

In Chapter Five, based on the above-indicated statistical
models, mathematical models of the motion of flight craft in dense
atmopgpheric layersL described by nonlinear differential equations
are constructed. Primary attention in this chapter ig given to
methods of the statistical analysis of the scatter of parameters
of flight vehilcle trajectories when various mathematical models
are used. In adaitlion to methods of the statistical investigation

xi

/10



of nonlinear processeg based on linear approximaticn, abproximate
humerical methods of the statistical analysis of nonlinear systems
are set forth (the method of statistical tests, the B. G. Dostupov
method, the interpolation method, and so on); ways of using the
method of least squares in statistical analysis are outlined.
Urgent problems in the investigation of flight vshicle motion in
the earth atmosphere include evaluation of the effect of atmo-
spheric perturbations on the scatter of trajectories. Chapter Six
in fact deals with methods of solving these problems. Much atten-
tion in it is given to setting forth a method of stochastic appro-
xlmation as applied to problems of setting up poelynomial depen-
dences of motion parameters on random factors characterizing
atmospheric perturbations.

A Chapter Seven sets forth numerical methods of the statistical
optimization of cohtrol processeg of flight craft motion in dense
dtmospheric layers. Elaborating numerical methods of the statistical
cptimization of' control processes became possible thanks to the use
in control system design practice of high-speed digital computers.
This then determined the nature of the™methods examined in the

bock and their algorithmic structure. -This chapter gives a com-
parative characterization of a number of computational prospects

of methods of searching for the extremum for the statistical
characteristics of stochastic control processes.

The methods and algorithms of statistical optimizaticn consid- Zl;
ered in this chapter can be successfully employed also in optimiz-
ing stochastic processes of controlling various objects of other
types described by nonlinear stochastic differential equations.

Chapter Eight deals with methods of statistical predict}on
of' the parameters of flight vehicle motion desecribed by nonlinear
stochastlc differential equations. Mathematical relations for
solving problems of predicting phase coordinates are derived within
the framework of regression analysis.

The book presents a large number of statistical characteristics

of the physical parameters of tThe atmosphere and the results of
solving practical problems.

xii
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THE ATMOSPHERE AND THE CONTROL OF FLIGHT VEHICLE MOTION
Ye, P, Shkol'nyy and L. A. Mayboroda

edited by Doctor of Technical Sciences,
Professor V. M. Ponomarecwv

CHAPTER ONE /12

DISTRIBUTION OF TEMPERATURE, PRESSURE,
AND AIR DENSITY IN THE DENSE ATMOSPHERIC LAYERS

1.1. Temperature Reglme in the Troposphere, Stratosphers, and
Megogphere

The temperature regime is one of the main factors determining
the physical state of the atmosphere. The nonuniform distribution
of temperature In the atmosphere accounts for the specific struc-
ture of the pressurefield and, therefore, of atmospheric circula-
tion relative to the =arth's surface.

Change in temperature in the atmosphere occursg under the
action of two main causes., The first is the interaction of the
atmosphere with the underlying surface, and the second is repre-
sented by processes cccurring within the atmosphere itself.

Change in temperature with time at some point in space can
be described with the equation

or 1 A dp ar, or .1
?TE_}(E‘+E?+33)+F;F_(M_ax+'vav) "gg./ (1.1)
in whilch £ is the density of air; cp 1s the heat capacity of air

at constant pressure; A is the thermal eguivalent of worlk; €,

€5, and € are influxes| of heat caused by the turbulent thermal
conductivity, radiatilive heat transfer, and phase transformations

of water in the atmosphere, respectively; u, v, and w are the
components of their velocity relative to the x, y, and z axes

(the x axls is tangent to-the circles of the latitudes, the ¥y axis
is tan ent to the meridians, and the z axis 1s directed vertlcally/
upward); T is alr temperature in an absolute scale; and p is air
pragsure. .

In the troposphere, the second term in Eq. (1.1), can be
neglected owing to 1ts smallness. In the upper atmosphere, as
shown in the period of atmospheric tides, this term now plays



an essential role. The remaining terms;?{Eq. (1.1) describe
temperature change due to the influx of heat, advective transport,
and adiabatilic ascent or descent of air masses.

The main source of heat for the earth's surface and the atmo-
phere is sclar radiation. The radiant energy of the Sun, on
passing through the atmosphere, is considerably weakenecd. . Its f /13
weakening occurs due to scattering and absorption by molecules
and atoms of the gases comprising the atmosphere and also by
impurities predgent in the air. However, most of the solar energy
penetrates through the atmosphere and is absorbed by the earth's
surface. In turn, the surface of the earth is a source of long-
wave radiation, which is absorbed by the atmosphere. The differ-
ence between the amount of absorbed direct and scattered radiation
and the radiation by the underlying surface that is, the radiation
budget of the earth's surface is one of the most important factors
determining the temperature regime of the lower stmospheric layer
-- the troposphere. Investigations showed 4557 that in the equa-
torial zone Cetween 39°N. and 3. Lat the radiation budget is
pogitive throughout the year. To the north and to the south of
this zone 1t 1is negative in the c¢old perlod of the year.

The transfer of heat from the underlying surface to the ailr
takes place by a fturbulent exchange and long-wave radiation. Of
high importance in the heat regime of the troposphere is the heat
reallized from the phase transformations bf water. Turbulent
transport plays a baslc role in the lowser troposphere. ;[ In the
upper troposphere 1t markedly weakens and radiative heat filux
becomes determining. In the stratosphere, as shown by studies
/187, turbulent thermal diffusivity plays an essential role. In
any case, without allowing for turbulent heat transport, we are
unable to understand how the radia tion conditions existing in
the stratosphere lead to the formatlion of temperature profiles.
Evidently, this is true aliso of the mesosphere. The main absocrb-
ing components of the atmosphere are water vapor, carbon dioxide
gas, and ozZone.

The amount cof heat which arrives per unit areca of the earth's
gurface in the lower latitudes during the year considerably
exceeds the amount of heat arriving in the upper latitudes. Thus,
the heating of the earth's surface decreases on the average from
equator to pole. Accordingly, a horizontal temperature gradient
1g induced in the troposphere oriented from pole to eguator.

While the main heat source for the troposphere 1s the earth's
surface heated by solar rays, in the stratosphere and mesosphere
the distribution of temperature by altitude and latitude as well
as 1ts seasonal changes are determined by the absorption of sghort-
wave solar radiation and also by radiation of the troposphere in
the infrared spectral region. Ozone is most significant in the
absorption of ultraviolet solar radilation in the stratosphere andg
megosphere.



Ozone is observed in the atmosgpheric layer from the carth's
surface to an altitude of 70-80 km, but most of it is concentrated
at altitudes of 20-25 km. The Hartley band (1800-3400 4) plays

|  the pjineipal rcle in the absorption by ozcne of the ultraviolet’

spectral region. Absorption of this spectral region of solar
radiation leads to heating of the atmosphere; its maximum occurs Zl&
at altitudes of 45-5% km. In addition, atmospheric heating also
occurs owing to the absorp@ionlof golar radiation by molecular
oxygen. 1t 1s evident mostly noticeably at altitudes higher than
90 km. The radiation ofiheat in the stratosphere and mesosphere
Ooccurs principally in the 15 pm bandfor carbon dioxide gas and

the 9.6 um band for ozone. The |overall effect of heating and
cooling, as shown by investigation ZE§7 does not exceed 1O/day for
the summer season in the 1/4-30 km atmospheric layer. Thus, this
layer is close to the state of radiative equilibrium. In winter
it somewhat increases from equator to polar latitudes.

The upper stratcsphere and the lower mesosphere are a strong
heat source in summer, with 1fs maximum infensity in the polar
region of the summer hemisphere. In the winter hemisphere, with
the exception of the polar latitudes, heating also predominates
over cooling, however here the heat sources are weaker than in
the summer hemisphere. In the polar latitudes in winter, in
contrast, cooling predominates over heating. In general, this
pattern 1s observed alsolin the upper mesosphere, though heat
sources and sinks 1n 1t are weaker. In the region of the meso-
‘pause, for example, a small heat Influx predominates; its mximum,
4°/day, lies near the summer pole.

Studies showed [/109/ that the stratosphere and the meso-
sphere are highly sensitive to fluctuations in solar radiation.
A 12% change in the absorption of ultraviolet radiation by ozone
above ] 35 km, and by oxygen above 20 km leads to a 2° temperature
change. The stratosphere in the 20-35 km layer 1s even more sehsi-
tive to fluctuations in the abgorption of solar radiztion #n the
visible spectral region. For example, a 3-6% rise in the visible
radiation also leads to a 2°C rise in temperature in the atmospheric
layer indicated above. Therefore the reflection of visible radia-
tion downward, especilally from clouds, is highly significant. It
is established that large and dense cloud fields observed in the
middie latitudes in winter can increase through reflection the
amount of 'radiation arriving at the stratosphnere in the visible
spectral region by 35%, which corresponds to roughly a 10% rise
in temperature in some of its region /109/.

Radiation conditions in the stratosphere and mesosphere lead
to the horizontal temperature gradient in summer being directed
south to north, and in winter -- north to south (here and in the
following we consider the gradient as a vector directed toward
the side of increasing function). A consequence of thisg temperature



digtribution is that in winter wegterly transport ol air masses
develops in these atmospheric layers. In summer, in contrast,
transport from east to west predominates. In the froposphere

however westerly transport is predominant in all scasons of the

year., However, in the zonal circulation waves continually are ’
generated which lead to the appearance of the meridional ¢omponent /15
of air motion. Advective transport of cold air masses to the south
occurs, and of warm air masges to the north. As a result of the
interlatitudinal exchange, redistribution of energy between the

warm and cold atmospheric regicons is observed. Interlatitudinal
c¢xchange acquires its highest intensity during the cold half of

the year.

Advective temperature changes in the troposphere can sometimes
exceed 109C per day. Advective temperature changes of similar
maghitude are observed in the stratospheres as well. Above 40 km,
advective transport of air masses can lead to even greater changes
in ailr temperature. In the stratosphere over the White Sands
station, in a day the temperature can rise 109C and higher and
drop 300C or more owing to the advective factor in the 40-km
atmogpheric layer ZBB . Advective temperature changes of similar
magnitude in the atmogphere have been obtalned alsc in the studies

/63, 106/.

As Indicated above, sdiabatic temperature changes also occur
in the atmosphere; they are associated with ordered large-scale
vertical motions. In the troposphere ascending and descending
motions result from thermal convection and horizontal convergence
or divergence of gir currents ariging owing to turbulent friction
in the boundary layer of the atmosphere and the nonsteady ztate of
processed ccecurring in the atmosphere. The most important role
in the thermal regime of the atmosphere is played by ordered
vertical motions embracing quite large alr volumes. The velocity
of ordered vertical motions is low. It averages 1-2 cm/sec and
can vary from several tenths to 5-10! em/sec. They lead to a
3-50C temperature change per day in the troposphere.

In the stratospﬁere and mesgogphere, ordered vertical motions
also are small in summer Z@h, 106/. Their velccity as a rule is
several mm/sec. In winter vertical motions in the stratosphere
have approximately the same value as in the troposphere. Vertical
motions in this atmosgpérﬂc layer also lead to temperature change
at the corresponding levels, where these changes are the greater,
the more stable is the temperature stratification of the air.

Based on data obtained from direct and indirect obsgervabions,
V. R. Dubentsov Zf§7 constructed a vertical meridiconal profile of
temperature up to the altitude of 100 km (Fig. 1.1). In the
profile is shown ths position of the transition of layers between
the spheres at which the lower 100-kilometer atmospheric layer



is divided. The temperature field, as shown in Fig. 1.1, has o
severgl features. In the stratosphere and lower mesosphere there J
is situated in summer a region of heat with maximum temperatures

over the polar region. A further rise in altltude is accompanied

by a rapid drop in temperature, and in the upper mesosphere there

is now found a region of cold, where the lowest temperatures are [;Q
also observed in the polar region.

In winter, the temperature in the lower stratosphere decreases
to an altitude of approximately 30 km. Above 30 km it somewhat
rises and then again falls. The vertical\temperatupe gradieﬁts in
winter in the mesogphere have a considerably smaller valus than
in summer.

Data from rocket sounding of the atmosphere showed that in
the stratosphere of the Arctic there is a nearly isothermal atmo-
gpheric layer from 10 to 30 km Z7§7. Only above 30 km is there - :
a rise in air temperature with altitude. In the temperate lati-
tudes the isothermal layer 1s somewhat narrower. The vertical Z;I
temperature gradient at the altitudes %0-5% km in the pcolar lati-
tudes changes over relatively wide limits. Whereas at the ocutzet
of the polar night it averages l.BO/km, by the end of the polar
hight it is 5.5O/km. In the middle latitudes, the vertical temper-
ature gradient in this atmospheric layer averages about EO/km.

The vertical temperature profile in the tropical latitudes
can be Jjudged only Ifrom spisodic observations taken with meteoro-
logical rockets.

Investigations showed that in the egquatorial zmone seasonal
temperature changes in the stratosphere, mesosphere, and lower .
thermosphere are small Zi1§7. omall seasonal changes in airp ‘
temperature in the_ lower latitudes is also indicated in /89/.

The authors of 1337, subJecting the air tLemperature extrapolated
to 15° N. Lat to harmonic analysis,obtained the amplitudes and
phagses c¢f the annual and semiannual cycles of ftemperature change
at different altitudes {Table 1.1).

As follows from Table 1.1, the amplitude of annual and semi-
annual femperature fluctuations in the atmospheric layer from
37.5 to 52.5 km is approximately identical. At the lower levels,
the amplitude of semiannual fluctuations is nearly three times
greater than the amplitude of the annual fluctuations.

Table 1.2 presents annual differences between the maximum and
minimum mean-monthly temperatures for 1%, 30, and 600 N. Lat by
Cole, Kantor, and Nee 4857, and for 40, 50, 70, and 80°N. Lat by
L. A. Ryazanova /63/. )
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TABLE 1.1, AMPLITUDES AND PHASES OF)
‘ANNUAL AND SEMIANNUAL CYCLES OF TEM-
PERATURE CHANGE FOR THE TROPICAL

ﬁ\; ZONE (15° N. Lat)

Aléltude 56-mo?th cycle 12~?onth cycle | {..J
¥m -‘|lampli- -(date of 'Eampll-~ {date ofrlf

tude,deg!lIst max. ltude,deg. maximum

27,5 2.2 211V 0.8 12jv
32,5 2,8 3V 0,8 2111
7.5 1,2 9V 1.3 3NV
42,5 1.1 24/11 1,4 7)1
47,5 13 2711 1,2 TH
52,5 2,0 iy 1,6 6/X11

1 !

From Table 1.2 it follows that the amplitude of annual fluc-
tustions in temperafture rises with 1at1tude, and especially

rapidly at latitudes higher than 40°, where its increase is by &
factor of 3-4,.

TABLE 1.2. ANNUAL DIFFERENCES BETWEEN

MAXIMUM AND MINIMUM MEAN MONTHLY TEM-

PERATURES (°C) AT DIFFERENT ALTITUDES
AND LATITUDES

U o J
Altitude Latltude deTErees i 1
xm T | o] w0 | se | oo ow )

]

25,0 4.9 11,0 ] 230 18.0 | 340 40,0
27,5 5.4 | 5.5 20,2

30,0 7.7 0 1,01 21,0 | 23,0 § 37,0 | 46,0
32,5 6,5 | 8.2 24,0 ’

35,0 8,6 | 9,0 22,0 | 28,0 | 40,0 | 38,0
37,5 3,091 7.9 28,8

40,0 7.2 8,01 28,0 | 29,5 34,0 42,0
42,5 4.2 1 7.0 30,3

45,0 6.7 22,0 27.2 40,0 36,0
7.5 | 3.4 | 5.4 23,2

50,0 5.0 17,0

5.5 | 7.0 | 4,0 17,0




The amplitude of the annval fluctuation is small. Table 1.3
containg the amplitudes of diurnal and semidiurnal temperature
fluctuations over the Azores 1597 obtained by harmonic analysis
of the data of atmospheric radio sounding.

. TABLE 1.3. AMPLITUDE OF DIURNAL AND SEMI-
.y DIURNAL CHANGES IN TEMPERATURE OVER THE AZORES
. ..

L . v T e
Altitude,km |Amplitude,”C L la1ei- {-Amplitude, °C !
' semidiu¥| diurnal ﬂtude,km'SemidlurﬂD1urna1 ;
1,5 0,02 0,20 12,0 |, wgod 0,29
3.0 0,02 0,14 150 /| 009 | 0,40
5.5 0,04 0,19 20,0 0,16 0,68

9,0 0,04 0,27 24,0 0,09 0,78

. The amplitude of the ﬁiﬁrnal trend of temperature rises to
1.0-1.59C at the altitudes 25-30 km, and to 3-5°C at the altifudes
40 km and higher /7 /

Special investigations of the diurnal trend of temperature
in the atmospheric layer from 30 to 60 km were conducted over The
American Whlte Sands Proving Grounds Z@ng I'or this purpcse, 11
metecorological rockets were launched with 2-hour intervals between
launches.

Results of the observations are in Fig. 1.2, from which it /19
follows that the diurnal trend of temperature is  best’ \defined
at the altitudes 45-55 km. The temperature maximum in this atmo-
spheric layer 1s observed at the instant of time close to 14:00,
and the temperature minimum -- about 4:00 local time. The differ-
ence between the maximum and the minimum temperature at these
altitudes was 15-20°C. DBelow 45 km, the diurnal temperature trend
1s less strongly pronounced.

A great deal of attention recently is being given to investi-
gating correlations betwesen ailr temperature at different levels
in the_troposphere and lower stratosphere. It was shown Zgb, 38,
68, 69/ that in the troposphere of the high and middle latitudes,
the autocorrelstion of temperature with increase in altitude
decreases. At the level of the troposphere the cocsfficients of
correlation decrease to Zero and™above this level they become
negative. The root mean square/ deviations of temperature from a
limited series of rocket sounding data (about 200 domestic and W
foreign soundings) were obtained by A. S. Borovikova and 0. B.
Mertsalova _7% and also by V. G. Kidiyarova /27/ forlithe 30-80 km .
atnospheric layer. They indicate that temperature variability in
this atmoéépheric layer is 6-12%. Statistical characteristlics of
temperature and atmospherlc parameters will be discussed in greater
detall below.



1.2, Distfibution of Pressure in the Troposphere, Stratogphere, and
Mesogphere

General correlations of change in pressure with zltitude are
simpler than for change in air temperature with altifude. ‘While
alr temperature in some atmogpheric layers falls off, and rises
dn others, jpressure steadily decreases with altitude. However,
the rate of the preassure decrease is not the same. It depends
on air density. In the lower atmospheric layers where the azir
dengity is higher, pressure falls off faster, and in the upper
layers -- more slowly. In addition, if one considers fthat the air .
density dependg not only on altitude above sea level, but also on /20
alr temperature, it can be concliuded that pressure at the same
altitudes can vary in different ways.

Two factors aflfect the baric relief of the atmosphere at a
apecific altitude: pregsure at sea level and the mean femperature
of the layer enclosed between sea level and the surface under
consideration. The effect of these factors is not the same every-
where. With:fincreasing altitude, the mean temperature of the
layer plays an ever larger role, and ssa level pressure -- an ever
‘smaller role. Even in the middle troposphere as a rule nearly
complete correspondence between the lower values of the altitudes
of disobaric surfaces with the lower valueg of the mean temperatures
is obgerved. Therefore, altitude regions of reduced pressure
(cyclones and troughs) are formed where there * ig srelatively
cold air mass, and the altitude regilons of increased atmospheric:
pressure (anticyclones and ridges) are formed in warm air masses.
In a few words, the structure of the pressure field in the atmo-
sphere depends on the structure of the temperature field.

As noted In Section 1.1, in the troposphere the highest air
temperatures are observed in the tropical zone, and the lowest --
in the polar regions., This distribution of heat and cold is
characteristic both of summer and winter, therefore isobarlc sur-
faces in the troposphere on an average are situated the highest in
the tropiecs /55/

In the stratosphere, the baric field, like the temperature /21
field, has a well-proncunced seascnality. Since in summer the polar
region heats up most strongly and, .therefore, the temperature
gradient ig oriented south to north, the highsst values of the
geopotentlal are observed over the pole. The isobaric surfaces Ty
becomz lower toward the south. A baric field typicali for the
summer season is shown in Flg. 1.3 /24/. 1In winter, in contrast,
the lowest values of the altitudes of Zsobaric sqrfaces in the
stratosphere are noted over the pole, as for example, in the map
of the baric topography of the 10 mb Isocbaric surface on 1 January
1962 (Flg 1.4). Thus, in winter the baric field in the strato-
sphere has a similarity with the baric field in fthe troposphere.
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Investigations showed that seasonal variations in the mean
pressure values in the stratosphere and mesosphere nave large values,

‘especially in the polar regions /27/. In winter they are identical

10

throughout the entire atmospheric layer from 30 to 7O km andlaverage
20%; in summer the increase with altltude from 20% at 30 km altitude
to 32% at 50 km altitude; they remain nearly constant Jwith further
increase in altitude. . ‘

Variability in atmospnerlc pressure relative to_a_seascnal
mean proved to be greater in winter than in summer [E_ .  Whereas
in winter the pressure fluctuates in the range 25-35% in the 30-80
km layer, in summer its variability is 10-15%,

In addition to seasonal changes, atmospheric pressure exhibits
diurnal varilations (Table 1.4}.

- Table 1.4 containg diurnal andsemidiurnal variations of pres-
sure over the Azores /99/.

From Table 1.4 it follows that up to an altitude of 5.5 km,
the amplitude of the semidiurnal changes exceeds the amplitude of
the dilurnal pressure changes. The amplitude of the semidiurnal
varlations rapidly decreases with altitude and becomes insignifi-
cant in the mlddle stratosphere. A further increase in altitude
is related to a rise in semidiurnal pressure variations. The
amplitude of diurnal pressure changes reaches a maximum at altitudes

22
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Fig. 1.4. Map of altitudes of 10 mb
isobaric surface on 1 January 1962

g-12 km and theresupon
decreasgses slowly with
altitude. But the rela-
tive ampiitudes in
diurnal variations of
pressure increases with
altitude. Whereass at

an altitude 3 km the
annual mean amplitude

of diurnal pressurs
changes is 0.03%, at

the altitude |9 km it
rises to 0.1% at the
altitude 20 km -~ to
0.4%, and at the alti-
tude 30 ¥m -- to 1.2%.
Diurnal pressure changes
increase with altitude
evern gbove 30 km, espe-
cially in the high lati-~
tudes in winter.

Data of atmospheric
rocket sounding showed

that in a day the pressure

TABLE 1.4. AMPLITUDES OF DIURNAL AND SEMI-
DIURNAL VARIATIONS IN ATMOSPHERIC PRESSURE

OVER THE AZORES /99/

{

Amplitude, mb |

Amplitude, mg }

Altithde,km )|~ —lALti- T S
diurnal Jjisemidiur! tide, km diurnalll semidiurflal
1.5 0,18 0,47 16,0 0 26 ¥, 00
3,0 0,25 0,57 20,0 0,21 0.07
5.5 0,23 0,29 92,0 0,18 0,05
9,0 0,32 0,18 30,0 0.12 0,01
P10 0,82 0,14

in the strat@sdhere of the upper latitudes can vary 10-15%. For
example, over the settlement of Fort Greeley the air pressure at
the altitude 35 km decreased 17% from 10 to 11 March 1964, ang
increased 13% at the altitude 45 km from 26 to 27 October.

11



1.3. Dengity of Air in the Troposphere, Stratosphere, and Megosphere

The pressure distribution in the dense atmospheric layers
depends on the structure of the temperature field, therefore the
;@ir}pressure iz a function of the mean temperature of the under-
lying atmospheric layer. The air density in some point in space,
in accordance with the equation of state, is determined by temper-
ature and pregsure.

Air pressure falls off rapidly with altitude. But changes in
air presgure in the dense atmospheric layers are quite large aﬂ /23
all altitudes. The air temperature in an absolute scale varies
relatively little. This circumstance ig responsible for the fact
that a change in air densgity with increase in altitude is increas-
ingly determined by pressure change. This dependencs of alr density
on tempersture and pressure shows up welli if one compares the dis-
tribution of mean pressure and mean air density with altitude.
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Fig., 1.5, Annual trend of mean monthly values
of air dengity in deviations from the 1952 US
Standard Atmosphere

A study Zﬁ@ﬂ7'showed that the highest air density is observed
in gummer, and the lowest in winter. The maximum seasonal variag-
tions in alr density are noted at the altitude of about 70 km and

12



130 and 70% from the standard density of air at the latitude of
609, and 110 and 95% -- at the latitude 309, Seasonal variability
at all latitudes decreases significantly above 70 Lkm.

The annual trend of mean monthly values of air density at the
altitudes 40, 50, and 60 km for 30 and 60° N. Lat is shown in
Fig. 1.5 also in deviation from the 1952 US Standard Atmosphere
ﬁ%y. The data ip Fig. 1.5 show that the highest density of air
at theslatitude 300 is noted in May and June. The maximum shifts
to June and July at the latlitudes 60°. The lowest air density is
noted at both latitudes in December and Januvary. The amplitude
of changes in the alr density at latitudes 60° considerably exceeds
the amplitude at the latitude 30°. Considerzble deviations of the
mean monthly density from the smoothed values denoted by the curves /24
occur at the latitude 607, especially in dutumn and winter. These
deviatlons are evidently associated with abrupt warming in the strato-
sphere (see Section 1.4).

Differences between the maximum and minimum mbnthly gir densi-
ties, which are observed -- as alleady noted -- in January and June,
increase with latitude. Whereas this difference is}29%iat the alti-
tude 40 km and latitude 60°, i1t ig 61% at the latitude [80°, that is,
it increases by a factor of two.| The trend in the seasonal vari-
ability of air density deécrﬁbed in different latitudes of the
northern hemisphere agrees well with the results obtained by V. G.
Kidiyarova /27/.

Investigating the distribution of alr density above 80 km
involves major difficulties. They consist in the fact that there
are only isoclated cases in which meteocrological rockets have risen
to altitudes above 80 km, and various indirect methods, owing to
their inadequate precision, afford only in approximate estimate
of atmospheric density. One of the most exact indirect methods
is the technigue |of determining density by means of cbservations
of meteor trails.

Small solid particles -- meteors -- continucusly fall into
the earth atmosphere. Their number usually exceeds 150-200 per
hour. On entering the atmosphere, the meteors heat up strongly
as they decelerate in its relatively dense layers and are vaporlzead
in the layer from 110 to 70 km. Here a growing trail (column)
of strongly ,"fonized air 40-20 km and several meters in diameter
is formed, which can be photographed.

The principal equations of the physical theory of meteors
make 1t possible to determine the denslty of the atmosphere in
the meteor zone. If the deceleration of the metecor dV/dt is
determined, the dengity of the atmosphere can be calculated by
the formula /64, 65/..

13
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where k is a coefficient expressed by the formula

1 Y2 {
,k=11_]’—-?":}2.f:|
(5]

and 1'is the coefficient of deceleration; & is the density of
the meteor particles; M is the mass of the meteor body; andﬁV\is
the velocity of the meteor. )

These quantities can be Tound from the brightness and other
characteristics cof meteors determined by photographs of meteor
trails.

Fig. 1.6 shows the variation in air density with altitude
obtained from 179 evaluations made on the basis of the above-
mentioned technique /64, 65/ in Kiev. Here also presented is
the variation in density with altiltude based on measurements in
Odessa (curve l), as well as the values of air density based on
measurements in Kiev when only data for meteors with velocities]
greater than U0 km/sec (curve 3) were considered. From Fig. 1.6
it follows that satisfactory agreement is observed in the alti-
tude range 90 to 110 km. At lower altitudes the air density
based on Kiev data is considerably higher than based on QOdessa
data. The overstatement of density values obtained from Kiev
measurements is accounted for by the fact that here the air
density was calculated from a relatively larger total of meteors

whose velocity was lower than 40 km/sec, while the above-presented

formulas are valid given the condition that the meteor velocity
exceeds 40 km/sec 1557. If we do not include meteors with low

velocity, the results ¢f the determination of air density in these

stationa agrees much better.

- Only isolated experiments have been conducted in studying
diurnal variability of air density in the stratosphere and meso-

- sphere. An example of these can be taken as the two launches of

meteorological rockets made over Kwajglein Island/with a 13-hour
interval 114/,

The measurements show that the air density observed at noon

|

time differs from the density observed at night. In the layer from

30 to 120 km, the atmospheric density in the day exceeded the night

value of densilty by about 10%. Investigations with meteor trails
showed that in the 80-110 km atmosphere the air density changes
20% from day to night in the middle latltudes.



1.4. Abrupt Warming in the Strato-
: e sphere and the Assoclated Varia-
W ¢ tions in Thermodynamlc Parameters
| of the Atmogphers

In winter, the usual struc-
ture of the femperature field
5L caused by radlatlve and advective-
dynamic factors in the stratosphere
1/ and mesocsphere is sometimes dis-
‘ furbed. This becomes evident
;L | ! ) _(“f above all in the rapid temperature
0 0 100 1K n)| rigse at some level, which during
o ' Co o a short Time interval encompagses
Fig. 1.6, The variation in air & large part of the stratogphere

denslty with altitude deter- and rarely the lower half of the
mined from meteor brightness: megogphere. A sharp ftemperature
1. GCdessa rise in these aimospheric layers
2. Kiev éall meteors) leads to quite large changes 1in
3. Kiev (meteors with V/ =40 pregsure and air density. - Warm-
km/sec) ing up of the stratosphere was

first detecited by Sherhag over
Europe in February 1952 /117, 118/.

Somg lnvestigators state that warming in fhe stratosphere [gé
wags filrst discovered in higher atmospheric layers. For example,
during the warming period occurring in January-February 1958 [f;7,
at the altitude of 40 km over Hays island, on 19 January the air
t emperature reached 290 K, while on 16 and 21 December 1957 it
was!| 223 and 2450K respedtlvely During this time ths temperature
at altitudes below 28- 30 km differed little from the temperature
usually observed here in winter. By 10 February 1958, the warming
enc@mpassed the atmospheric layer from 15 to 35 km in which an
unusually high temperature was detected, 240°K. In similar fashion,
warming developed in January 1960, January 1961, and so on /50/

In radiosonde and especially rocket observations conducted
in the past decade in the USSR and ths United States,'winder strat-
cspheric warming was regularly detected. This phenomenon is
obgerved nearly every year, and in some years even several times
durlng the winter scason.

Tahle 1.5 gives a ligt of Warmlngs occurring in the high
latitudes of the northern hemisphere at the altltudes 23-25 km 1n
Z257 1964 aocordlng to Kh, P. Pogosyan and A. A, Pavlovskaya

4, 56, 57/

During the periocd of warming, air femperature often increases
by 2 large value. At the altitude of 23-25 km, as shown in the table,
the stratosphere becomes 20-40°C warmer, and during the January 1963 /27
warming, there was a 56°C temperature rise. Observations showed,
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TABLE 1.5, WARMINGS OVER THE ARCTIC
AT THE ALTITUDES 23-25 KM (1957-1964)

D“ra‘-ﬂ13m944~:g;ffﬂExtent?Lf
Warming period ! ition, ;|at beg at enqvwarﬁing!°t
3 days iof per|of per 4
3—9X1 1957 ° 7| —65 | —25 | 440
241111 1058 8 —76 | —di +35
1E—20fX1 * 5 i I S R
17201 1950, | 3% =61 | 41 | 4
3—13n 10 —61 AT | 414
2—1ﬁ1umu”Y 12 —60 | 35 | 95
5—11]1 6 —65 | 49 | n
23/ X 13X 10 —G0 ] —19 +20
19-27/X1 8 —65 | —a8 417
3—13/1 1961 “J 10 —79 1 =5 | 42
26/11—§ 111 " 10 74 | 37 437
0 1—1911 1962, y 20 65 | Bl +31
17281 1963~ 7] - 11 —75 | —19 | +56 |
19 1511 1954 ] 13 —74 —32 -pjff‘J

however, that maximum heating of the stratosphere usually occurs in
the B0-40 km atmospheric layer.  From the data of rocket sounding,
the air temperature over Churchill station made in January 1958
increased by nearly 70°C at the altitude 40 km.

As the warming embraces increasingly lower levels, the upper
strateospheric layers in which it began graduallycocled down.

Warﬁing does not occur simultaneously in the entire upper-lati-
tude stratosphere. Data from a rocket sounding in January 1958 ;. -
showed that a temperature rige wasg noted at an altitude 40 km over
Hays island on 19 January, while during this period ordinary winter
tempsratures were observed over Churchill station. Warming here
began only on 25 January at the altitude of 45 km. Sherhag /1177, in
studying this warming, established that at the altitude of the 25 mb
isobaric surface the thermal region shifted west by northwest. The
thermal region at this level was discovered over Central Europe on
25 Japnuary. Later, it gradvally shifted to the North Ses, on 30
January it reached Iceland, and then crogsed North Americsa.

Warmings in the stratosphere occur infrequently also in summer;*]
however they are not_as extensive as in winter. According to the
data of Sherhag /117/, abrupt warming began over Beriin on 7 July
1958 at the 20 and 25 mb isobaric surfaces; the abrupt warming
reached 1ts culmination on 10 July. During this period the air
temperature rose 5%, then began to decrease, and reached its
initial values. This pattern is characteristic for observations



at a certain fixed point. In reality, the process of stratospheric f
warmings 1s highly complex and 1s assocciated with the radical’ -
arrangement of the thermobaric field at all altitudes.

Abrupt warmings in the stratosphere are not the exclusive
feature of the peolar latitudes. They penetrate the btemperature
latitudes all the way down to the H0-45° parallels. Cases in
which warming was distributed even to 30° N. Lat have been recorded.

Significant transformations of the pressure field are accom-
panied by abrupt kemperature rises in the period of winter warmings
in the stratosphere. Cages have been recorded when as the result
of abrupt temperature rises, the winter cyclonic type of pressure
field in the stratosphere was replaced with a summer anticyclonic
type.

Frequently a disruption in the stratospheric cyclone and its
breakup can be seen, as well as a cold cell, into two separate
cyelonic vortices, one of which is in the temperature latitudes,
and the other in the subpolar. At the same time, the Pacific Ocean
and Atlantic a&nticyclones become much stronger and are shifted
northward. During the period of warmings in the middle strato-
sphere, the alr temperature agbove gseveral staticns in Canada rose
65-70°C in five days, as a result of which the altitude of the
10 mb isobaric surface increased more than 800 m in the center of Zg@
the Atlantic anticyclone., A maximum inecrease in the altitude or
this isobaric surface was observed over Greenland and amounted to
2400 m /24/. At higher levels, there is any more sizeable rearrange-
ment of the pressure fields. At the altitudes 40-55 km, anticyclones
can merge into a single aystem lying where there had]been a cyclonic
vortex before the warming. The winter typese of thé pressure field
ig replaced by the summer /92/.

As a result of the significant rearrangement of the thermo-
baric field in the stratosphere during the period of winter abrupt
warmings, fthere is a sharp increase in air dengity. An example
of this can be taken as the warming in Januvary 1958, when the air
density over Greenland rose 13% at the altitude 29 km (Table 1.6).

TABLE 1.6, TEMPERATURE AND DENSITY OF AIR DURING
A WARMING PERIOD IN THE STRATOSPHERE OVER CHURCHILL

STATION IN JANUARY 1958 (AFTER I. P. VECHKANOV)

- S —— .
bor : H terrl )
Meteorolo-{| p pj - L_km
gical]'element’ ate | RN NIERE
' [N
£*C | 27l } —55 | —62 ] —71 | —59 | —-83 | —17 | 13 | —17 | —23
2 2911 —35 | —65 | ~65 ) —23 | 410 | +17 | + 9| — 4| —16
pg/my 2711 !85,0/40,2)18,7 7,983,510 1,61]0,85 |0.45!0,230 i
20/l ;84,01 40,2 { 17,6 | 7,30 | 3,51 | 1,87 [ 1,10 | 0.65 [ 0,363
A‘\ ' . f
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From Table 1.6 it follows that in two days the air density
increased 16% at the altitude 45 km, and 52% at the altitude 60 km.
Cases were observed when during warming periods the air density
at the altitude 50 km rose 70-80%, and sometimes 10?%.

There are two hypotheses sccounting for the cause of abrupt
winter warmings in the stratosphere. The first of these is that
of Sherhag /117, 118/ and states that stratdsphere warmings are
a consequence of the manifestation of solar activity in the atmo-
sphere. Sherhag correlated the trend in the density of the earth's
magnetic fileld, which depends on sclar activity, with temperature
in the upper atmospheric layers and determined that a falrly close
relationship is observed between them. In addition, it was found
that during a period of intense warming in the atmosphere occur-
ring in January 1953 there wag an increage 1n the deceleration of
the second artificial jearth satellite, which was determined by
the increase in air density at the sgatellite altitudes.

The presence of a correlation bestween solar activity and
changes in temperature and pressure in the stratosphere was confirmed
also [by other investigators /10, 34, 40, 41, 66, 111, 116/. They
maintained that the causd of the ftemperature rise during periods
of' abrupt warming is the heating of gases constituting the atmo- Zgg
sphere as & lresult of the absorption of particles of solar
origin penetrating the stratosphere during solar flares.

The second hypothesis can be called the advective-dynamic
hypothesis. Advocates of this hypothesis /56, 57, 80/ dispute that
direct scolar manifestations exist in the mesosphere, stratosphere,
and troposgphere, asserting that the buildup of winter stratospheric
warmings 1s affected Jointly by vertical and horizontal air move-
ments. In Investigating the 1957 warmings, Craig and Lateev /31
calculated the vertical movements cver the North American conti-
nent and the adjolning regions of the Atlantic. As shown by cal-
culations, the maxima of the degcending ailr motions were obgserved
in the region of the Great Lakes at the 25 mb isobaric surface on
4 February (8 cm/sec), at the 50 mb isobaric surface on 6 February

6 cm/sec?, and at the 100 mb iscbaric surface on 8 February

L cm/sec . The descending air current spread over vast areas.

Even when there were descending motions of lower magnitude (3 cm/ |
sec), according to the study by M. V. Shabel'nikova ZEQ7,‘with
s vertical temperature gradient 0.49/100 m observed on the average
in the stratosphere, the adiabatic temperature rise was 2500 per
day in the lower stratosphere and 3606 in the higher layers.

After a region of warm air forms in the stratosphere under
the effect of the descending movements, advective transport takes
on high signhificance. In the lower stratosphere by the_ _end of
the warming period this can amount to 13-17°C per day /56/.



The above presented results account mainly.for the buildup

of atmospheric abrupt warmings and not the cause of this phenomenon.

At the present time the concept ZEQ7 that there is a relation-
ship between stratospheric warmings:sand large-scale macroturbulent
formations which arise in the troposphere and then encdmpass the
stratosphere by penetrating increasingly higher layers 1s contin-
uing to be developed.
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CHAPTER TWO /30
STRUCTURE OF WIND FIELD IN THE TROPO-
SPHERE, STRATOSPHERE, AND MESOSPHERE

2.1. Wind Regime in the Troposphere, Stratosphere, and Lower
Megosphere

Characteristics of wind field in the troposphere, stratosphere,
and mescaphere can be judged from the structure of the pressure
field, which indicates tThat the westerly transport of air masses
predominates in the troposphere of the northern and southern hemi-
spheres in the middle and high latitudes in winter and summer;
this air-mass)\transport is perturbdd in places by acquiring a
northerly or goutherly component.” This becomes manifested in
maps of baric topography in the form of troughs and ridges.

The velocities of the westerly flow in winter and summer differ,
especially in the northern hemisphere. In a map of the topography
of the 500 mb surface, the horizontal gradients of the geopotential
have a considerably smaller value in summer $han in winter. In
the transitional scasons intensive westerly air flows also predo-
minate 1in the troposphere.

The structure of the wind field in the tropospghere is inhomo-
geneous. This inhomogeneity is manifested in that thelwind velo-
city as a rule rises with asltitude in this atmospheric layer. The
maximum wind velocities are usually observed close to the tropopause.
In sgddition, the wind velocity changes with ldtitude, rising or.
falling with increase in the latitude. Thus, close to the tropo-
pause there arise zones in which the wind velocities reach consid-
erable values. These zones are relatively navrow in width and
relatively long in length and are célped jet streams.

Jet streamg in the troposphere are caused by the large contrasts
in temperature and lying in the zone of trangition from the high b

cold cyclofes to the warm high anticyclones. From the energy point



of view, Jet streams aré\zones of maximum reserveg of kinetic
energy. Wind velocities}in Jet streams usually exceed 30 m/sec,
sometimes reaching 70-100 m/sec and higher.

Study has shown Zil7 that in fthe northern hemisphere four
Planetary high frontal zones are observed: the arctic, the
northern of temperate lﬁtitudes, the southern of temperate lati-
tudes, and the subtropical. In winter the first of thesge ig
located on the average around the latitude 68° and has a mean
wind velocity along the zone axis of 23.4 m/sec. The northern
and scuthern planetary high-altitude frontal zones are noted at
the latitudes 56 and 399, with mean wind velocities along the

/31

axes of 38.6 and 55.8 m/sec, respectively. The subtropical frontal

zone is situdted at the latitude 29° with a mean wind velocity
along fthe axis of 64 m/sec.

In summer, the mean latitude of all four planetary high-
altitude frontal zones increases. The high-altitude arcti
frontal zone lies at the latitude 739, the northern of temperate
latitudes -~ at the latitude €4°, the southern of temperate lati-
tudes -- at the latitude 48%, ‘and the subtropical -- at the lati-
tude 41°. Mean velocities alo g the axes ol these zones are
18.1, 27.9, 37.1, and 44.4 m/sec, respectively.

Relatively weak and unstable streams are observed in the
troposphere in the equatorial and tropical zones. In the lowest
layer, as a rule, easterly currents predominate, - ¢hanging at
the jaltdtudes 5-10 km to westerly currents, which in the upper
troposphere of'ten again changing into easterlyl

In the stratcosphere and mesosphers, the nature of ailr streams
i1s also determined by the structure of the pressure fi=ld. In
winter, much of the northern hemisphere is covered by a cyclonic
vortex, whose center lles near the pole (see Fig. 1.4)., In summer,
in‘contrast, anti¢yclonic circulation is obﬂerved over a great
portion of the hemisphere. The center of the high pressure region
also lies over the polar regions (see Fig. 1.3). Thus, in winter
the westerly wind observed in the troposphere continues to predo-
minate in the stratosphere and mesosphere. In summer, the
westerly wind at the altitude of about 20 kh changes into an
easterly wind. The latter propagates up to the upper limlt of
the mescsphere.

Characteristics of the annual trend of the zonal component of
wind velocity in the stratosphere, mesosphere, and lower atmo-
sphere well illustrate the time-based vertical profiles (Figs. 2.1
and 2.2} plotted from the data of atmospheric rocket sounding for
30 and 609 N. Lat. /103/. 1In these profiles, isolines above
80 km, being unreliable, are drawn with a dashed line.
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Both at 30° and at:60% N. Lat the change of the winter

westerly current into the summer casterly current as a rule occurs

from the top down. It begins in the upper mesosphere at the end

of March to the beginning of Aéril and continueslthfﬁugh April in

the lower mesosphere and stratosphere.

A comparison of these results shows that the circulation of
the wind spreads downward in the zone of 60° N. Lat faster than

in the zone of 30° N. Lat. In addition, stronger winds are found

in the zone of 30° N. Lat than in the zone of &60° N, Lat. The
autumn restructuring of the wind field occurs 1n an especially
short time period. Above 80 km circulation and strengthening of
wind occurs again in all seascns. Particularly strong winds in
the lower thermosphere are observed in summer.
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The vertical time-based profiles of zonal components of wind /33

velocity show the features of periodic oscillations in the velo-
city caused by seasonal changes in the pressure fields. Still,
durlng summer there ars fregquent perturbations of the winter
regime of circulation associated with abrupt warmings in the
stratosphere. For example, con 9 February 1962 during]a warming
period in the 25-50 km layer, strong westerly winds typilcal of
The winter regime were replaced with easterly winds. Over dhur—
chill station on 19 January and 19 February 1962 a westerly wind



at a velocity of U7 and 30 m/sec, respectively, was observed at

the altitude 37 km /24/.
of February, an‘aﬁmerhrlwind with a veloeity of about 40 m/sec

became evident.’

In some cases the disturbances in the usual winter regime of

At the end of January and the beginning

circulation are manifested not in the circulation of a westerly

wind, but in its abrupt.
and replacement by the easterly direction only in a small atmo-

spheric layer.

ghort-lived weakening,

or in weakening

Investigations showed that the stability of the zonal and
meridional components decreages with altitude.

Harmonic analysis of three series of atmospheric soundings

made with meteorological rockets over the Eglin

(Air Force Base)

in May 1961 and White Sands stations in February 1964 (about

30 N Lat) showed the presence of diurnal and semidiurnal varia-

tions in wind componenhts that were conslderable in magnitude.

Table 211—§resents their amplitudes in the 30-00 km atmospheric
o7 ‘

layer /11
TABLE 2.1. AMPLITUDES OF DIURNAL AND SEMIDIURNAL
. VARIATIONS OF WIND VELOCITY (M/SEC)
[ o iy e
‘N\ _Zonal component. 1 Meridiqnal_component;___i_-
J!; L Eglin AFB, /| White Sanclils Eglin AFB, ; White Sands ]
| knj_May 1961 ‘| Feb 1964 May 1961 Feb 1964
r ' diur-j semi- | diurisemi- diurna%semi- diurna#semidiurnah
o nal diurnall nal |diurnaj - \diurn ) l' e
a0 |21 | 09 | o2 o8 .4 | 0.8 0.3 | 17
, 135 | 0,6 0,8 4,7 | 2,5 1,9 1.9 2.5 0,8
40 | 1,9 2.5 5,9 2,3 1.3 1,9 2,0 0.9
f a5 | 67 | 1.4 |32 5.1 7.8 24 | 10,0 | 2.1
;80 | 3,4 1,9 3.1 1.6 7.7 2,0 1,9 3.3
55 | 1.5 2,8 6,4 | 8.1 4,5 3,1 5,5 1.7
60 | 2,4 2,0 |[12,1| 39 5,4 2,2 1.3 6.3

For comparlson, Table 2.2 gives the mean-annual diurnal and
semidiurnal variations of fthe meridional and zonal components
of wind velocity in the troposphere and lower sgtratosphere obtained

from radiosonde observations /99/.

From Tables 2.1 and 2.2 it follows that diurnal and zemidiurnal
variations in wind velocity compenents are small in the upper tropo-

gphere and in the lower stratosphere to 30 km; f£hils indicates the
relatively low variability of wind with time.

tude of diurnal and semidiurnal variations accompanies a further

A rise in the ampli-
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TABLE 2.2. MEAN-ANNUAL AMPLITUDES OF /34

DIURNAL AND SEMIDIURNAL VARIATIONS IN
ZONAL AND MERIDIONAL COMPONENTS OF
WIND VELOCITY. LAJES FIELDS, AZORES

(m/sec)
Zonal component ]Meridional compenent |
i H km§ [l I i
diurnal demidiur.ldiurnal i semidiurnfl
9,2 0,2 0,5 0,1 0,1
11,8 0,6 0,5 0,2 0,2
16,1 0.3 0,6 0,3 0,3
20,6 0,2 0,4 0.3 0.4
23,9 0,2 0,7 0,2 0,6
. 28,5 0,3 0,9 0,7 0,6

increase in altitude, where the diurnal amplitudes as a rule exceed
the semidiurnal. Amplitudes of variations in wind velocity compo-
nents have a maximum at the altitude 45 km, and in winter it is
greater than 1n summer; and the minimum is at the altitudes 50-

55 km. Higher up, a ftrend to increased diurral and semidiurnal
amplitudes is observed. Above (60 km, as will be shown below,

wind variabllity rises considerably.

2.2. Distribution of Wind in the layer of Meteor Trails

Meteorologlical rockets carry out] atmospheric sounding usually
at altitudes to about 60—ﬂ0 km. In the higher atmospheric layers
measurements of meteorological elements, including wind, cccur
only episodically with rockets, and at altitudes exceeding 7O km
they are nearly entirely absent. Accordingly, when investigating
the wind regime in the 80-110 km atmospheric layer, which is
customarily called the meteoric layer, wind measurement bylmeans
of meteor trails plays an important role 13} 23, 25, 917f‘ This
methodms adeguate precision hot only for determining the rate of
transport, but also for investigating the turbulent]structure of
wind, '

Measurement of wind by means of meteor trails is based on the
following principle. As already mentioned, when entering the
dense atmospheric layer the meteor heatslup strongly and vaporizes,
forming a meteor trail -- a column of highly donized air. If the
meteor trall formed is irradiated with high~frequency radio waves,
a point at which”the wave encountlers the trail at a right angle
reflects the signal. Under the action of wind, the meteor trail



18 shifted and the total distance from the observation site to
the point producing the reflection changes.
Doppler frequency shift, which yields a change in the phases of
the reflected signals proportional to the radial component of
wind velocity. The altitude at which the radio echo appears and,
thus, the wind is measured depends on the wavelength sent by the
radar. For a wavelength of 9 m,

93-95 km.

The meteor7layer§so@aracterized oy very intense turbulent
mixing. Therefore to analyze the wind regime one must calculate
the mean-hourly wind velocity components, permitting the diurnal
trend of wind velocity to be investigated.
that the greatest scatter of wind velpcity components occurs in
those hours when there is a change in wind direction.

for example,

gives the meridional components of wind velocit

in Khar'kov from 18:00 to 24:00 local time
~as_bhefore corregpond to the wind direction from south to north.

H

i

|

TABLE 2.3. MERIDIONAL COMPONENTS

This leads to a

it correspends to

Observations showed

Table 2.3
from observations
/25/. Positive values

OF WIND VELOCITY (m/sec). KHAR'KOV,
1964
~ Time: bours
Date 18—i5 }‘39—20 | 20-21 | 21-m ] 9223 ’ 2324
| [
VI 25 5| —12 | —28 | —a0 | —45
VI 35 | —14 | —13 | —30 | —20 | —44
1231Vl 10 24 —33 | —43

Harmonic analysis of the mean-hourly wind veloclties reveals
the prevglent wind, and also diurnal and semidiurnal variastions.
Of greatest interest are the values of the prevalent wind, as well
as semidiurnal variations, since the amplitudes of the latter
considerably excced the amplitudes of the other harmonics.
gatidns showed that for Moscow, for example, the amplitude of semi-
diurnal varlations fof the zonal component have their greatest value
in the winter months (32 m/sec) and decrease by a factor of 1.5-2

13 | —27

Investi-

by June /3, 227- Amplitudes of semidiurnal variations of meridional

components in January-February are approximately the same.
and May their values decrease to 10-18 m/sec, while in April and
June they approach the winter values for the zonal components.

The zonal components of the prevalent wind reach their maximum

of 20-30 m/sec in April ané June.
1-5 m/sec, and in May -- 12-1%

again becomes easterly in June.

In January and February they are
The sign of the zonal compo-
An easterly stream ig observed

/sec.
nents also changes during the year.
in February and March, in April-May, it changes to the westerly and

In March

ﬁzié
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Fig. 2.3 gives the average results of wind measurements 1557.
From Fig. 2.3 a it follows that variations in the ampiitudes of

the semidiurnal harmonics of wind velocity components shows

similar trends in a1l of the stations listed, that is, their values
are obgerved to decrease toward spring and summer. From Fig, 2.3 b
it is clear that the behavior of the zonal components (v_) in all
three stations is approximately the same. Similarity cah also be
noted in the nature of the changes of meridional components (vm)

as well, Therefore, air currents in the meteor zone over Minches-
ter, Moscow, and Khar'kov have much in common. Thisg is actually
not surprising since the difference between the latitudes of these
stations 1s small,

These data indicate
that considerable wind velo-
cities are cobzerved in the
‘ 80-110 km atmospheric layer.
3 Also, In this layer wind
exhivits greater variability
in magnitude and direction,
indicating highly‘deVQIO@ea
1ol ! o turbulende.

) : ‘ ", m/sec
ms M/sec : Ny O
d- a)

=

[

-—

Ottt S B N S E_ 2.3. Turbulent Motiong in
gvymgdseﬁ) vm,hUSec Dense Atmospheric Layers

Different air mass
20l . 2 transport rates are observed
i in the atmosphere st differ-
//[f ent levels. In addition,
‘ air mass transport is
thermally inhomogeneous
‘ both in the vertical and
-20+ ' - - in the horizontali direc-
TR [ S T R R T T4 . tiong., All this leads to
co v veow toaom e vow | conditions faworable for
' the bulldup of turbubence.

Sy ™

Fig. 2.3. Variationg in the Values
of Semidiurnal Harmonics (a) and
Prevalent Winds (b} in the Meteor
Zone :

1. Manchester, 1953-1958

2, Khar'kov, 1960-1961

3. Moscow

There are two approache
to the study of turbulent
motions. :The first is the
semiempirical method of
investigation. In a turbu-
lent flow regime the velo-
city vector at socme point

: in space changes with time.
Thereﬁore when studying turbulent motions 1t 1s convenient to sub-

divhide the field of instantaneous velocities into mean velocities)

(&, v, w)|and velocity pulsations (u', v', w'), averaging the
cquabtions of motion in accordance with known principles of f
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hydrodynamics. Ag a result of averaging, termd appear 1in the
equations of motion containing quantities consisting of the fluc-
tuational velocities

— p(uf)z _ Pu"v’, - ilwrur;

— p('v’) —pv'w, — (W)

These quantities express the trangport of momentum of indl-
vidual air massss owing to pulsational motions and are called
turbulent stresses. If one considers that there is an analdgy
between turbulent and molecular motions, then by using some semi-
empirical relations one can obtain the quantities of turbulent
stresses. For example, .

—pu'w = (4, g—: .

Thus, turbulent stresses can be expréésed in terms of charac-
teristics of mean moticn. The guantity k, characterizes the inten-
gity of momentum transport in the verticaf directicon as a result
of fluctuaticonal motions and 1s zalled the coefficient of turbulenée

The semiempirical theory of turbulence came tTo be applied in
solving a number of problems of atmospheric physics, aerodynamics,
and other seciences. But 1t cannot be used in investigating
phenomena in which internal structural properties of a low are
determining. Inlthiscasge another approach -~- the statistical -- is-
used.

Turbulent pulsations are random variables. Therefore to
determine structural features of turbulent flow it is required to
bring in statistical methods of investigation and, therefore, to
deacribe the structurse cof turbulent moticns The apparatus of the
theory of random functions must be used. A. A, Fridman and L. V. éi@
Keller used for this purpose Lhe[ccwuﬁﬂnce jfunctlons

- 3 5 &y
Rjk (xhxh Xay £, 31, E‘_’i i, %) = M [u'j (x’l_ s G B X3 — o5 \

t"‘“‘)“k(xrf 2; xf+ 2; xs+‘ - t+”§ﬁ]-\ (Qui);

The dependence of the function on the components &,&,& t(
" expresses the internal structural properties of the flow,'whlle
its dependence on the variables Xy and © charaqterlzes
the difference between the external condlélons for different parts
ol the medium. A turbulent medium is anisgotropic. This means
that in the general case the directions X1, Xp, and x5 are not
eguivalent in a turbulent flow. However, within a 10w a volume
can be singled out which all directiong of the coordingte axes

are equivalent. This property of the turbulent flow is called
local isotropy. If it is understood, in addition, that the
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external conditions under which the motion of thefmedium oceurs
are the|same, then the statistical characteristics of the medium
will be identical for all ite points and, therefore, the turbulent
flow can be regarded as homogeneous, and the velocity of the
medium can be regarded as a staticnary random function. The

. covariancel function for this flow depends only on the difference

in the arguments 7 = tp - ty:

R = M (O (¢4, | (2.2)
il the motion at one polint is considered, but in different time
intervals, and

RO = M () (x40, | (.3)
if Theimotions considered at different points of the Ilow separated
from each other by the distance 1 = 1p - 1q.

The variables 7 and 1 are corrdspondingly the time and linear
scales of turbulent motions. .A hypothesis states }that turbulent
eddiesy rare transported by the mean flow. In addition, it can

be assumed that the time and 1inear_sg@les are related in terms

of the velcelty of the mean motion:}#un{
in a study of the properties of the turbulent flow, very

often uge is made of the spectral densities of turbulent pulsations,
which constitute a Fourier transform.of the covariance [function

-]

Sy(w) = ‘Q’I‘- YR,, (x)e "

T

(2.4)

where w is frequency..

The dispersion of the turbulent wind pulsations is associated 539
with the spectral density. This relationship has the following
form: '

Du = R,, (0) = j’ Su (m) dw,

—0

(2.5)

In several cases the structure function

= M = = 6

By = MU (O — 0 ¥ (2.6)
is very convenient in characterizing the internal properties of
the turbulent flow.



The relationship between structure and eovariance |functions
is expressed by the cobvious equation

'Bi(1)=2R,,(0)42R,,M (2.7)

- cand the-relationship. between. structure_and correlation functions
is expressed by the relation

e 2.8)

B! (v) = 2R, (O) [1 — 7, (3)]: / (2-8)

The statlstical theory of turbulence was elaborated in works
by A. N. Kolmogorov, A. M. Obukhov, M. I. Yudin, J. B. Chaylor,
et al. A. N. Kolmcgorov showed ZEB, 227 that the main energy
source of fluctuational motion 1s the instability of the mean
motion. The laminar motion of a viscous liquid with characterigtic
v and characteristic scale L is steady-state, when the Reynolds
number Re _ vk , where v 1s the kinematic viscosity of the liquid,

does not exceed the critical value Re.,. If Re > Re.n, the motion
becomes unstable. Veloclity fluctuaticns vi arise jin the flow,
whose linear scale is 1. The specific energy of these fluctua-
tions is (v{)2. Thepefore, in the inception of fluctuations in
veloclity from the mean value, energy proportional to [y 18

' {

transmitted per unit time. On the other hand, some of the encrgy
of the fluctuatioral !motion ig dissipated. This part of the
energy is proportional to l%;ll . Then the{condition for the exis-

tence of velocity fluctuations can be degcribed as follows:

(@ o)
. i

7 )

or after certain transformations|

Re; = — 1,

Iv; % . (29)

Since these calculations were made to a precision of specific {40
numerical cofactors, it is proper that the solution can be written
as: ‘

Re; >Re ! (2.10) *

The number Req is called the internal Reynolds number. From
Eq. (2.9) it follows that large eddies for which a large Req is
characteristilc arise most easily. When inequality (2.10) is
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satisfled, these large eddles:become unstable and pass on thelr energy }
to smaller eddies, which subsequéntly also lose stability. Thus,
the fransfer energy from the mean motion to fluctuational motion
consisgsts in the breakup of large eddies into finer ones. Here the
dissipation of energy € is large only for small eddies. If we usge
dimensional analysis, we can determine the scale of eddies A whose
fluctuational energy changes into thermal. This scale depends on
the kinematic viscosity and the dissipation of energy

A C(za1)
= (5] o

In local-igotropic turbulence, as shown by A. N. Kolmogorov
/29/, the following equality is valid:

B: (1) =Ce’lf f - (2.12)

in which C is the coefficient of proportional%ty. This relation-
ship came to be called the law of "two-thirds”.

The law of "two-thirds" was fipst derived by A. M. Obukhov
Zﬂ?, 4@7 by the spectral decomposition of the velocity of a steady-
state Lurbulent flow. To the law of "two-thirds" there dorres-
ponds a power dependence of the spectral density of turbulent
pulsations on fregquency, of the form

S((!J) = C]?-’am—ﬁla’ l
which sometimes is called the law of "minus five-thirds."

M. I. Yudin /84/ investigated the applicability of the law
of "two-thirds" ahd determined the ieffect of anisotropy of turbulent
motions on the correlations ¢f the wind field| structure.

If we examine g large-scale flow, even at a distance of about
1 km the modulli of the differences in the wind velocity components
along the horizontal proved to be sometimes less than along the
vertical. However, if we limit ourselves to considering these
differences only in the horizontal direction, we need not take the
vertical inhomogeneity into account. M. I. Yudin obtained the
following structure law for large-scale anisotropzc ?urbulent |
motions: '

. A=12 -
E (p)=(?‘5‘1“‘) Cclep! I
S EN Y £ (2.13)

where E'g (py) 1s the fluctuational energy of horizontal motion; /i
E4 (pi) is the fluctuational energy of vertical motlon, assumed
constant, 1f the neighboring atmospheric layers are separated
from each other by diﬁtapces that are commensurable with the
"mixing path™; Ay, B, and C are constants; b1 is a quantity that
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is the reciprocal of the scale of turbulent eddies. This struc-
ture law came to be called the law of "first lpower."

Numerous investligations dealt with an experimental check on
the structure laws of furbulent motions, confirming the correla-
tion that had been obtained theoretically. Several methods are
used in the experimental investigation ol turbulence’in the free
atmosphere. The greatest use was made of the methed based on
employing as the wind gust gauge an accelerograph mounted on an
aircraft. Using accelerographs recording [ g-loads that arise when
an gircraft flies in & fturbulent flow, it is possible to determine
the velocities of vertical wind gust.

The paper /85/ presents a series of dtructure functions B (7) |
of vertical wind gusts. The scale of the eddies at which the
structure runction reaches gaturation is called the characterigs-
tic scale. Calculations showed that in 70% of the cases the B%ax
values occur in time Interval =7 har €dual to 3.5-7.5 sec, which
corresponds to a linear eddy scaie of the 0.6-2.0 km. The struc-
ture function of wind gust ig conveniently approximated with the
expresgion

Bz(_”,.:._,,fw_l_"“\ (2.14)

The results of calculating the exponent n showed that its
vaiue on the average follows in the range 0.6-0.8. Thus, the
feasibility of the law of "two-thirds" is confirmed for eddy scales
of' the order of 10 km.

Investigations showed /85/ that the characteristlc scale of
turbulent eddlies depends on the thermal state of the atmosphere,
which can be characterized by the difference of the adiabatic
Yg and actual ¥ vertical temperature gradients. Up to an altitude
12 km, this function is determined by the cexprsssion

. IR
Eha;z; 1.5 (1a l)- (
The structure of horizontal fturbulent pulsations in the 6-12 km
atmospheric layer is investigated by means of a Doppler"system]
132, 537. The degree of general perturbability of the wind .
velocity field was estimated by means of the relative (with respect
to the mean wind velocity at the given altitude) root mean square
deviation g g

As showrn by the calculations, at altitudes €-12 km and wind
velocities elkceeding 50-60 km/hr, ¢ fluctuates in the range 0.05- [h4
0.30. It has two maxima, one of which lies in the 7.5-8.5 km
layer, and the other -- in the 9.5-10.% km layer. The structure
functiona of horizontal turbulent pulsations also increase 7

31



32

with increase in the eddy scale, and their characteristic scale is
approximately one order greater than the characteristic scale of

vertical pulsations, averaging 18 km.

If we approximate these

structure functions by Eq. (2.14), at all altitudes within the
£-12 km layer the exponent n on the average will be clos% to 2/3,
that 1s, the horizeontal turbulent pulsations in[thejtroposphere
also obey the Kolmogorov-Obukhov structure law.

However,

as shown by investigations,

the exponent n and the

coefficien¢ A of the structure law of turbulent pulsatiens depend
on the degree of thermal stabllity of the atmosphere. The exponent
The rate of its decrease is large in

n drops with increase in ¥
the region where n = 0.8, and smaller n < 0.8.

A, In

contrasgt, increases with increage in vy .
the fact that as the instability is increased,

tion of turbulent energy rises.

The copelficient

This derives from
the rate of dissipa-
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At the present time much atfention is being given to investi-
gating correlation and spectral characteristilcs of turbulent motions.
Spectral densifties of vertical S,(82) and horizental $,(R) turbulent
pulzations within this atmospheric layer, ©.2-7 km, obtained by
G. P. I1l'in, shown in Figs. 2 L gnd 2.5. The spectral dengity of
the vertical gusts varies over a broader 1nterval fhan the horizontal
gusts. If the spectral densltlies are 1ntegrated over all frequencies,
we can obtalin minimum and maximum dispersions of the fturbulent compo-
nents of wind velceity. Figs. 2.4 and 2.5 present the root mean
square deviations corresponding to these dispersions.

A detailed gtudy of the energy spectrum of fturbulence was made
in jet streams /82, 8;7 Fig. 2.6 presents 1n logarithmic coordi-
nates the spectral density in a jet streamiand the altitude 8 Lm.
The curve in this figure can be approx1mated with two linear
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Segments. ITn different spectral regions, the spectral dengity 1s
described jpy different power expressions of the form S(Q}»agﬂ
For freguenciles corresponding to scales less than 600 m, the expo-

nent n = -1.67w This shows that the snergy spectrum for these
scales agrees well with the law "minus five-thirds.” For larger
scaleg, the exponent n = -2.7. The readon for the deviation of

the spectral dengity from thisg law in this interval of scale
valuesg is the work that must be done by the fturbulent eddies
againsgt the Archimedean forces, as a result of which the kinetic
energy of turbulence for the case of stable temperature_ stratifi-
catlon the atmosphere changes into potential energy 1827. For
small-scale eddies, the energy loss in work done against the
Archimedean forces is negligibly small, while large-scale eddies Zﬂi
can loge a consliderable fraction of the energy. Here the energy
equilibrium within the inertia interval is disrupted, which is the
reason for an ilncreasgse in the slope of the curve in the region of
large scales.

Measurements of turbulent moilons were organized in the Central

‘Aerological Observatory using radiosondes with an accelerometer

acceggories especlally designed for this purpcese. The observations
were taken in Moscow, Sukhumi, and Tashkent. The resulting data
permit several characteristics of wind gusts to be determined.

\ T o Fig. 2.7 shows the
quhL@E@EIE incidence of turbulent
oo YA/ pulsations with altitude.
The incidence was calculated
for each kilometer atmospheric
layer, and the latter was
assumed to be turbulent if
a layer of turbulence 50 m
cthick was enceuntered in ift.
Incidence values obtained
with the aid c¢f radioscndes
ware compared with incidence
values determined by air-
craft sounding of the atmo-
Siai~0"E7 sphere (curves 2 and 3 in
' Fig. 2.7 a). It turred out
that fthe incidence of
; turbulence calculated from
100 , , ] ' aircraflt measurements is
0ama 830 63 621 m| smaller than the incildéhcee
1 ] - . . .
0 0% rad/m obtained with radiosondes
. .o (curve 1 in Fig. 2.7 a).

. Averaged over the year and
Fig. 2.6. Brergy spectrum of in all seasons, the inci-

turbulence occurring when Jet q -
ence of turbulent pulsa-
igggﬁms intersect (7 Februaky | tions falls off with altitude,
reaching a minimum at the

0'3 107?



altitudes 7.5 km in winter (curve 1 in Fig. 2.7 ¢)l and 10-12 km in
the remaining seasons. Then an abrupt rise in incidence occurs. L6
Averaged over the year (Fig. 2.7 a), autumn (Fig. 2.7 b) and winter
(Fig. 2.7 c) its maximum is noted at an altitude of anpout 12.% km
and| reaches 50, 50, and 70%, respectively. A further inerease in
;altitude 1s associated with the decrease in the incidence of turbu-
‘ lence1 An exception is represented by spring (Fig. 2.7 d) when a
" zoné of high incidence of about 60% is observed in the 15-25 km
layer. Turbulent motions weaken at an altitude of about 30 km.
However, in winter the. second maximum lies in this altitude. Studies
ghowed that/over Moscow, for example, in 30- 40% of the cases moderate
turbulenée is encountered in the tropogphers in summer, but in winter
and spring -- in the stratosphere in the 15-20 km layer., Also in
this layer 1s intense turbulence observed in 8% of the cases.

‘d}j

[ 1™ i 1A }_II i N i . SU |
“0 80 O &0 87 0 &0 80 ¢ &P 80 0 40 B0%)

| o el emeeneenal

Fig. 2.7. Altitude distribution of inci-
dence of turbulence over the year (a),
autumn gb ; winter (c), spring (d), and
sumer (e

1. Moscow

2. Tashkent

3. Sukhumi

Radiosonde measurements made 1t possible to determine the
thickness of the turbulence layers. The greatest thickness of
layers with turbulence occurred over Tashkent, and the thinnest
-- over Moscow. Aircraft studies confirmed the dependence of the
incldence of large thicknesses of layers with turbulence on lati-
tude. Whereas in the upper and middle latitudes the incidence of

turbulent layers more than 1000 m thick was 10-15%, in the southern

35



latitudes it rose to 30%. In the high and middle latitudes the
maximum incidence occurred for turbulent layer thicknesses of 300-
600 m, and the lowest -- for thicknesses of 400-800 m.

A characteristic feature of turbulence is its patchy character.
This is especially frue of the upper ftroposphers and the lower strato-
sphere. Zones of turbulence are extended horizontally up to 100- AT
120 km.

The characteristics of turbulence examined below apply to
the troposphere and the lower stratosphere. The development and
1mprovement of atmospheﬂlc rocket sounding permitted experimental
study of turbulent eddies throughout the atmospheric layer. To
obtain characteristics of turbulent motilons in this case, a sliding
mean of the horizontal components of wind velocity were calculated
by averaging wind profiles for some interval of altitude H, using
the equaliiy

e e et z+%
@I(zi t! 'FlvH)z.?lT j. T"I(Z? t’ /l)dz, - (2'15)
24l
’ 2

- A S o

in which v.(z, h, t) is the i-th velocity component {mean) of the
wind, measured at the vertical interval h. Therefore, turbulent
components of wind velccity can be calculated with the equality

(2.16)

(z tk H)——w(z th}——w(zf

Equality (2.16) makes it possible to obtain 2 set of pulsations
of wind velocity compornents for each wind profile, on the basis of
which The correlation fgpctlcn

M v (2, hv (2 + 5 1)] (2.17)

rils f) = M lv’f(z 5]

4

can be obtained, where £) 1is the altitude interval, having/the 51gn1f1—
cance of turbulence eddy scale.

: Thelset o correlation functions obtained for individual wind
velocities can be averaged. Thus, it 1s possiblb to obtain a time-
averaged correlation function of- the turbulent wind Ve1001tyjcompo~
nents, for sxample, forieaoh season - uu—fl

r(a)—m-Zf(

If we apply Fourier translofm (2.&) toweqmélﬁty (2.18), we get the
energy spectral pulsaticns of wind velocify components.

(2.18)

The energy spectra of turbulent components of zonal dnd meri-
dichal wind velocity components in the atmesphere to an altitude of
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50 km, based on_the above-presented method, were calculated by

Kao and Sands ZEC;7 by preocessing 210 wind profiles obtained with’
the atmospheric rocket sounding conducted over White Sands station
in the period from January 1363 to December 1964. These profiles /48
include 21,000 wind measurements. The energy spectra are shown in
Fig. 2.8, from which it follows that normalized spectral densities
of pulsations in zonal and meridicnal wind velocity components are
similar and proportioral to 272, The maximum turbulent energy
occurs at frequencies in the range 0.03-0.06 km~1 (eddy scale
2.5-20 km).

Table 2.4 gives the dispersions of turbulent components of
zonal v and meridional u components of wind velocity for seasons
and averaged over the year,

TABLE 2.4. SEASOMAL AND MEAN-
ANNUAL DISPERSIONS OF TURBULENT
WIND VELOCITY COMPONENTS, m2/sec?

Season * M [y My
. Winter | 73,62 29,57
_ Spring ! 56, 61 20,96
__ Summer | 23,06 18,63
~ Autumn | 48,68 24,09
. Year / 50,49 23,32 J

From Table 2.4 it follows that dispersions of the fluctuations
o' zonal components exceed by more than a factor of 2 the dispersions
in the fluctuations of meridicnal wind velocity components. An excep-
tion is repregsented by the summer season, when ' they fare approximately
~the same. [ Turbulence in this atmospheric layer’is most developed
in winter. The smallest dispersions |are observed in summer.

In Fig. 2.9 isashown the altitude distribution during the year
of the kinetic energy per mass of(mean and fluctuational horigzontal
motions., Fig. 2.9 traces two maxima of eddy motions: at an alti-
tude of about 10 km in autumn and at the beginning of winter, and
at an altitude of about 46-U48 km in winter. The first of !these
evidently is assoclated with the tropospheric jet stream. The
region of minimum kinetic enesrgles of eddy motion lies in the middle
stratosphere, where its center occurs in summer and ig observed at
an altitude of about 22 km. It indicates the low variability of
the eastérly wind in summer in the stratosphere.
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The kinetic ensrgy of the mean motion has three maxima. The
first_bf these 1s detected in the stratosphere at an altitude of
12 km and relates te the autumn-winter tropospheric Jjet stream.
The second maximum in autumn and in the beginnirg -of winter lies
at the altitude of 50 km. It characterizes the winter jet stream.
Finally, the third maximum is noted;in summer in the stratosphere.

By comparing the encrgies of the fluctuational and mean motionsg,
we can see that the largest kinetic energles of eddy motion lie ] /UG
close| to the maxima of kinetic energy of the mean motion.

In the mesosphere and the lowar part of the thermosphere,
turbulence is studied by radar observations of meteor trails. As
indicated in Section 2.2, meteors entering the atmosphere of the
earth heat up due to friction and vaporize in the 70-110 km layer.
As a result, a meteor trail 1s formed, which 1s a column of ionized
air. The radial electronic density 6, in the trail is determined
by the law :

in which « is the linear electronic density, t is the time after
trail formation, and dj is the coefficient of molecular diffusion.
This concentration persists during avvery short time interval.|
Later, the meteor trail rapidly deforms under the effect of turbu-
lent eddies. Therefore, itSP electronic density becomes less.

In addition, turbulent eddies produce inhomog@neities 0f electronic
density, which bring about radio wave scattering. As a result,

a Doppler frequency shift occurs, whose value is proportional to /50
the radial component of wind velocity. Thus, it now begins possible
to determine the horizontal and vertical turbulent pulsations and

to estimate how the characteristiecs of turbulent eddies, for example,
their linear and time scales /36, 87/.

If it is assumed that the critical Richardson criterion

| Rim‘?’*ﬁ»] - (2.19)
S az

where ¢ is the wind velocity vector ig equal to unity, then

s=[gu-]"

Since de/dz has the dimension of angulariyelocity, we can
write . 3 ST
4 1
dz = T§

where t; 1s the characteristic time scale of large eddies. Then
Eq. (2.}9) becomes ‘



. Sigy107
.

[]

Suia} a?

Sul@)

Lo ]

:. 1

I+

Lot trgant Lot L3 021}

g -2 7 ;
10 - 12 rad/m

J

i

Fig. 2.8. Energy spectra of

turbulent cbmponent of zonal
and meridional wind veloclty
components

If we denote the specific
anergy of large eddies per
unit time by Eq, the energy
during the time t; is

e =E¢ | (2.21)

where ¢ 1is the velocity of
turbuleht pulsations.

(2.20)
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Fig. 2.9. Altitude distribution |
during the year of the kinetic
energy per unit mass of mean (a)
and fluctuational (b) horizontal
motions

The linear scale of large eddies can be obtainsd by the formuls

L=

'4. 1 (2.22)

Eq. (2.11) was used'to calculate small dissipating eddies.
From this formula 1t follows that

and .%?;F%J%jl (2.23)
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Here ¢l is the velocity of pulsations in small eddies and to 1s
the chiracteristic time =scale.

Agsuming that the velocity of horizontal turbulent pulsations
of large eddies is taken as the mean value, 35 m/sec,iBéler 4827
obtained the following characteristics of large eddies at the
altitude 90 km:

t] = 50 sec, By = 25 Whkg,

Ly = 1.6 km, de/dz = 20 m/(sec-kg).
Given the condition Vv = 4 mg/sec, characteristics of dissipating /51
turbulent eddies were alsc determined, as follows:

cd = 3 m/sec, t, = 0.4 sec, and Ly, = A= 1.3 m,

Greenhow /95-97/ made a statistical treatment of radar sound-
ing of 900 meteor trails He showed that in the 70-110 km payer
very large vertical wind shears were observed. In this layer
there were wind shears from O to 144 m/sec per km of altitude.
Thelr mediag_&as 10 m/(sec-km). Wind shears of this value were
obtalned alsoc by other investigators.
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Fig. 2.10. Structure func- Fig. 2.11. Structure function
tion of horizontal pulsa- of horizontal pulsations in
tions in wind velocity in wind velocity in the meteor
the meteor trail layer as trail layer as a function of
a function of horirzontal vertical gscale of eddies
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geale of eddies

In the meteor trail layer the root mean square values of
horizontal turbulent pulsations vary from 15 to 45 m/sec, and their
median is 25 m/sec /95-97/. The maximum value of vertical turbulent
pulsations does not exceed 10;;5[m/sec, with a mean of 2 m/sec.

Horizontal and vertical scales of large eddies can be estimated
if we know the correlation functions. The correlation functions



of horizontal turbulent pulsations were obtained by Greenhow
/95-97/. He \established that the horizontal scale of these turbu-
lent pulsations is 150 km or 6000 sec, and the vertical scale
somewhat exceeds 7 km. The scale of the lower part of the spsctrum
of turbulent eddies is about 30 m. Thus, the scales of large and
small eddies, as well as thelr other characteristics are under-
stated by Booker. The above-presented data permit the structure
of turbulent motions in the layer of meteor trails to be investi-
gated. Knowing the nature ol the correlation functions and the
dispersions of the turbulent wind velocities, for example, using
Eqs. (2.7) and (2.8) we can calculate the structure functions )
corregponding to them. Plots of these functions are in Figs. 2.10
and 2.11,

As follows from Fig. 2.10, beginning with the scale of 5 km 452
Yudint's law of "first power" is observed. The| structure function
reaches saturation approximately at the scale 180 km. This is
also confirmed by calculations. If we approximate the structure
function with equality (2.14), calculations showed that the
dependence of the structure function of horizontal turbulent pulsa-
tlons on the horizontal eddy scale dh is of the form

Bi (1,) = 94y, (2.24)

and the dependsance of the structure function of horizontal pulsa-
tions on the vertical eddy scale dv is described by thb eXxpression

2 —
B; (1,) = 120q,. (2.25)

The structure function of turbulent wind pulsations is porpor-
tional to the specific functicn snergy of the turbulent flow.
Therefore, if the "first power" law 1s satisfied, the coefficients
in Egs. (2.24) and (2.25) have the meaning of the gradient of this
energy. Their ratib shows by how manyitimes the energy of turbu-
lence changes more rapidly 1n the vertical direction compared with
the horizontal, that is, their ratio characterizes the anisotropy
of the turbulent flow. This ratio obviously is equal to 1L4.

Turbulent eddles with a scale smaller %han 5 km ehey|another

structure law. In accordance with the study /70/, the Kolmogorov-
Obukhov law of "Iwolthirds" is this law.
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CHAPTER THREE /53

VERTICAL STATISTICAL STRUCTURE OF PHYSICAL
PARAMETERS OF AIR IN DENSE ATMOSPHERIC LAYERS

3.1. Characteristics of Vertical Statistical Structuﬁd o' Physical

Parametersg of the Atmcsphere

Temperature,\pressure, and density of air and winds are nandom
functions of space and time. Therefore a complete description of

-the strpcture of fieldsiof these mefeorological elements must be
bagsed on 1Investigating their space-time /statistical characteris-

tics. This investigation is possible wheh founded on a large
series of values of these atmospheric parameters at different
points 1n space and 1n different time intervals. Unfortunately,
guitie often this information is lacking. This is particularly

true of atmospheric rocket sounding data. Atmospheric rocket
sounding at present is the only method hy which measurementsg can

be extended tc a large fraction of the lower 100-km atmospheric
layer. However, rocket sounding is currently carried out from

a limited number of proving grounds and at different periods of
time. Accordingly, based on rocket sounding data it is posszbﬂ
only to obtain characteristics of the vertical statistical struc-
ture of fields of the physical paraﬂeter of" the atmosphere

averaged over large f{ime lncervala_ In this case, the temperature,
pressure, and density of alr at gome fiked level are viewed as
scalar, and the wind veloclity values -- as - vector random variables.

The fullest characteristic of a random function y is its
stochastic description by means of laws of distribution or the
functlong of the distribution of the densities of probabilitieg
f{y). In several cases, for practical applications it proves to
be sufficient to specifly random functionsg and variables by deter-
mining simpler characteristics -- the moments of random functions
and variables, which are lessg complete characteri?tics.



The physical parameters of the atmesphere, such as temperature, ZEE
pressure, alr |density, and wind velocity components, are distributed
as shown bywinveqtigations according to the normal law. Therefore
the gtatistical properties of fields of the physical characteris-
tics are quite fully described by the mathematical expectations

Myl = | }'f(y)dyj (5.1)

—_—a

and by the covarilances \

[

Rttt = { | [9i=m,) (s —m,]f (v v s 1) at, dby, (3.2)

where t; and t2Aare certaln arguments.

The covariances are constituent clements of the covariant
matrices. Let us examine the covariance! matrices of temperature,
pressure, and air density as applied to the problem of investi-
gating the vertical statistical structure of the fieclds of these
atmospheric parameters.

The statistical characteristics of the meteorological fields
are calculated based on data on temperature t(Hi) and pressure
p(Hy) for a series of levels Hi. They make it |possible to
calculate, using the eguation of state (1.7) the density of air
at the same levels p(Hi). Thug, in the specific case there ars
values of t, p,  and p that can be congldered as a set of compo-
nents of the n-dimensional random vector X:

X = p () (n=3m). ‘ (3 . 3)
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Let us compare with this vector the wvector of mathematical /55
expectations my oq the same variables.

m,y ||}
m(H)

.......

Then theggﬂmﬂalizai covariance ; matrix oi thermodynamic charac-
teristlcs of atmosphere can be Obtained ag follows:

Rem MK =m) (X =] | (5.5)

where M is the operation of mathematical expectation, and * is
the operation of matrix transposition. '

The generalized |matrix (3.5) from it 1t 1s expanded, is a

complex matrix, that. can be partitioned into nine blocks ]
RH E. ip i _}?_.r_p“ )
Ry=11 Rpt Rpp Ry |\ B (3.6) |
RP‘ i RPI’ : Rpp

The blocks lying along the principal diagonal of matrix (3.6)
are autoccwuﬁance )matrices of temperature, presgure, and air den-
sity, while the remaining blocks are reciprocal cgwﬂjamkgjmatrices
of these meteorological elements. Autocovariance Imatrices are
symmetrlc matrices, while reciprocal cgwﬂﬁance}matrlces are asym— \

metric, where L e
- . + |
: R —Re;; R, ER:;J; Rp= :1.0' i[

Hence i1t follows that 1f we know the blocks lying along the
principal diagonal and above it, the generalized matrix (3.6)
becomes wholly defined.



Based on matrix 3.6 we can obtain the correlation matrix corres-/36
ponding to it : '

T v Tep | The ‘
rs=|| 7o d oyl Tue b (3.7)
reir,ir l

whoge blocks are reciprocal and autocorrelation matrices. There are
also asymmetric and symmetric matrices, respectively., The elements
of the block matrices comprising the matrices 3.6 and 3.7 are asso-
clated by the sgualities

H H) = Ry (H,H')
o (H, 1) VRu(H HYR(H H)’ (3.8)
oo, 1y = —_Fp G (3.9)
z VR G HYR,, (H', H')'
o ) = L) (3.20)

VR, (H HYR (7 H)
and‘ so on, Wwhere the Jelements under the radical sign are

oy Bltuated along fhe principal diagonals of the corresponding blocks
and constitute dispersions.

The wind factor can be represented as two components, one of
which is directed along the parallel, and the seécond -- along the
meridian. As indicated in Chapter Two, thsse components_of wind
velocity lie along the axes of a coordinate system, which is taken

as’istandard in meteoroclogy, and the components themselves are called
zonal and meridional.

Let us denote the components of the wind velocity vector by ™
u.and v, respectilvely, and let them represent thelr set in the
form of the n-dimensional random vector c.

i (Hy) ‘\

u (1)

w(H,) : (3.11)

1f we compare the column mﬁzixﬁdth‘jthe corresponding matrix /57
of mathematical expectations . .
o]
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.......

o || M) || (3.12)

.......

the covariance 'matrix of the vector can be obﬁained as follows:

(3.13)

Re= M[(C—me)O— me)?)- |

Expanding matrix (3 13), we will get the block matrix

(3.14)

The blocks of matrices (3_14) lying along the principal diage-
nal are symmetric, anmeWMﬂﬁnce jmatrlces of the wind vectcr compo-

nente. The remaining two matrices are asymmetric raﬁpro&ﬂfcmmuiaxm

matrices and have the property

= R "zm

Matrix (j 14) makes it p0551ble to obtaln the correlation
matrix _ : -

. | (3-15)

whlch]has the same characteristics as the matrlx (3 14). Between
the elements of the blocks of matrices (3 14) and (3.1%) there
exists the relation

Rl H)
H') = L S
o (H, HY) V Ry (I H) Ry (F 1) (3 16)
“_ Rog (1, H)
rw;(hr'H)_]/R,U.H(H,H)RwU(H"HP) (3 1?)
Royo (FLH') —
Tu () = e R T 1) (3.18)

The disperaions ofrthe wind vector components are under the
gign of the radical in expressions (3.16)-(3.18).

The elements of the above-considered ccwuﬁance imatrlces are
calculated from experimental data using the famlllar formulas:



(3.19)
(3.20)

(3.21)

The results of American rocket sounding of the atmosphere in
the period 1961 to 1966, pertaining to the US proving grounds
listed in Table 3.1, served as the main starting material for cal-
culating the characteristics of the vertical statistical structure
of the above-indicated meteorological fields.

TABLE 3.1. STATIONS OF ATMOSPHERIC
ROCKET SOUNDING WHOSE DATA UNDER-
WENT |PROCESSING

_— =

| Station f Latitude Longitude_(wegt)
| White Sands [ | awmiN | 10699
‘- 'Poixfanugu’j‘ 34 07 . 119 07
* ‘Cape Kennedy . 23 14 80 36
—u——"i
Wollops Island 37 50 7529
Churchill ; 58 47 9417
Fort Greeley | 64 00 9417
Ascension Island| 7508 | 14 98

All the rocket sounding data were divided ihto two latitudinal ]
groups. The first group included the data of the stations White
sands, Point Mugu, Cape Kennedy, and Wollops Island. The second
group comprises the results of rocket launches at the proving
grounds of] Churchill station and Fort Greeley. In the following
we will call these latitudindl groups the middle and high latitudes,
respectively., Ascension Island is in the equatorial zone. For the
investligation of the vertical statistical structure of the fields
of temperature, presgsure, and air denéity, 592 cases were used, and
for the lhvestigation of the vertical structure of the wind fieid
-- 1020 cases. These rocket soundings together with data of syn-.
chronous radio sounding supplementing them in relation %o latitu—J"]Zég
dinal groups and half-year periods into which the starting data
were subdivided dealt with the layer up to 50-70 km. The period
- of time from April to October refers to the cold half-year, and
from October to April refers to the warm half-year.

hy
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The rocket sounding data used for the statistical interpreta-
tion as a2 rule were more than two days apart. To investigate the
diurnal variability of the air density,. a number of observations
taken a day apart were examined. These data numbered 72 in the
warm period, and 82 in the cold.

The precision of fthe measurements of atmospheric parameters
was characterized by the root mean square error of the individual
measurements. The meteorological rockets took measurements of the
meteorological elements with the following precision: the root
mean sqguare error of the pressure measurements was 4%; the root
mean sgquare error o the temperature measurements was 2-3°C.7 | As
a result, the air density based on rocket sounding was determined
to an average position of 5% /90/. The root mean square error of
wind veloclty measurement in the atmospheric layer 10-70 km was
G.5-2.5 m/sec, if the wind measurements were made by means of a
parachute device and falling spheres, and abhout 10 m/sec when the
wind was measured by radar observations behind the clouds of
metallized dipoles /105, 107, 108/,

3.2. Altitude Distribution of Mean Values of Temperature, Pregsure,
and Air Density In the Dense Atmospheric Layers

To expand the characteristics of the verticald statistical struc- ~
ture of the fields of temperature, pressure, and air density, let’
us conglder the altitude distribution of several statistical charac-
teristics of these“physlcal parameters of the atmosphere in differ-
ent-latitudinal zones and thalf~years over the North American continent.
A comparlson of these characteristics with those obtained for
other regions in the northern hemisphere shows that the general
regularities of the vertical structure have no essential differences,
although there are someldifferences in details.

The altitude distribution of alr temperature averaged by half-
years and latitudinal zones 1s shown in Fig. 3.1 for the North
American continent; from this figure it follows that the vertical
profile of the mean temperature in the middle latitudes differ to
a congiderable extent from the vertical profiles of the mean tem-
perature of the upper latitudes.

The profiles of thé half-year averaged temperature agree closely
with famlllar concepts of the distribution of air temperature in
the dense ‘atmospheric layers, which are briefly expounded in Chapter
One, concerning the difference between the vertical and horizontal
gradients of temperature in the cold and warm half-years.

——— e



Fig., 3.1. Altitude distribution of sir temper-
ature averaged by half-years and latitudinsgl

zones
Middle latitudes: warm period (1) and cold period
period (2) g :
Northern latitudes: warm period (3) and cold
period (i)

Equatorial zone (5)

In addition to the mean temperature, of high interest are data /61
characterizing fluctuations in air temperature at different alti-
tudes. Fig. 3.2 a shows the deviation from the mean value of extre-
mal temperatures in different {latitudinal zohes and different half-
years observed in the period 1961 to 1966.  From Fig. 3.2 a it
follows that in the sftratosphere and lower mesosphere the tempera-
ture can differ 20-45YC from the mean value. The largest positive
temperature deviations occur above 20 ¥m in the cold half-year.

They occur in the winter months and are assoclated, as already
noted above, wilth abrupt warmings in the stratosphere,

Large fluctuations in temperature in these atmospheric layers
are indicated by the fairly high values of the root mean square
deviations of temperature, shown in Fig. 3.2 b. From this figure
it follows that the largest root mean square deviations of temper-
ature observed in the cold half-year in the northern latitudes in
the 30-60 km layer. Above 50-60 km, the root mean square deviations
of temperature 1in the northern latitudes decrease sharply, while
1n the middle latitudes they remain nearly unchanged,

ko
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Fig. 3.2. Deviations from the hean value
of extremal temperatures (a) and root
mean square deviations from temperature
(b}. The symbols are as in Fig. 3.1.

standard value. 1In the 12-25% km atmospheric

Fig. 3.3 presents
the deviations of the
mean temperature values

| from the temperature

based on the 1964 stan-

dard atmosphere (SA-64).

Fig. 3.3 shows that
the mean temperature
values as a function
of regicon and half-
year can differ widely
from the standard
values., In the tropo-
sphere, the mean tem-
perature is lower

than the standard 1n
the upper latltude@,
where the difference
between them in the
cold~half year based
on absolute magnitude

‘at the altltude 3 km

exceeds 20° G, while
the mean temperatures
above the standard

in the middle altitudes.

At the al€itude 12 km
the mean temperature
in both latitudinal
zones and half-year
is nearly identical
and 1s equal to the
layer in the upper

" latitudes the stratosphere proves to be warmer than the standard )/
value. But in the cold half-year the mean air temperature is below o

the standard value. Only in the lower megosphere are pogitive
deviations of temperature from the standard value observed, and
they increase sharply with altitude, reaching 27°C at the altitude

65 km.

In the cold half-year on the average at
atmosphere 1in the high@r latitudes is colder

all altitudek the
than the standard

value., The max1mum value of 'the negatlve temperature deviations

Table 3.2 presents the mean air temperatures and the tempera-
ture based on the CIRA- 196518tandard Atmosphere. The mean temper-
ature values are taken from collections of atmozpheric rocket
soundlng data 1_2;7 They were calculated for the period 1961 to

19065.
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Analysis of the data in
Table 3.2 shows that above 30 km
there most of\the levels the
mean temperatures for both sta-
tions prove - to be lower than
the temperature based on CIRA-
1965. An excepticn is repre-
sented by the Temperature in
May at the White Sands station
and also in May/ and Ocﬁcber at
the altitudes 00 km in the sta-
tion Fort Greeley.

The mean atmospheric pres-
sure depends to a large extent
on the time of the year and the
latitude. We compars the alti-
tude distributions o the mean
pregsures for the warm and cold
half-year (Fig. 3.4), we can
conclude that the largest values
of the mean pressure are observed
in the zone 30-40° N. Lat in the
warm half-year, and the smallest
-- in the upper latitudes (50-
60° N. Lat) in the cold half-
year. The difference between

’)4 71 Nt

Fig. 3.3. Deviations of mean |
air temperature from standard
value:

Symbols as in Fig. 3.1.

TABLE 3.2. MEAN VALUES OF TEMPERATURE t AND TEM-
_PERATURE BASED ON CIRA-1965 (°c)

| Wh1te Sands ] ' EQII Grﬂelﬂy i

Coa | May October: May. i Qctober

" km | c1ra-1o |cira-tes | F | cira-1965 | cira-190s

' T

bos0 | —41,1 | —39,0 § —45,8 | —40,0 | —45,3 | —50,0 | —51,5 | —49,0 - 1
40 | —12,6 ‘ —16,0 | —23,5 | —23,5 | ~13,4 | —19,0 | —36,3 | —27,0 [
50 49| —2,0 | —at L0} 29| 1,0 |—134| —40 | _
60 | — 6,1 | —20.0 [ —~11.7 | —4,0 | —4,4] —18,0 [ —11,8| —31,0

them at the altitude 3 km is 28 mb,“at the altitude 6 km -- 31 mb,
and at the gltitude 9 km -- 21 mb., These differences are due to
‘the predominance 1in the cold periecd of all anticyclonic regime in
the mlﬂ latitude troposphere, “and the: predomlnance of’ intense
cyclonic activity in the upper latitudes during the cold period.
This bature of the differences in the mean pressure values by half-
yvear and latitudinal zones persists up to altitudes of about 40 km.
Above 45 km, the largest mean pressure ig observed in the warm +'*

" half-ykar in the upper latitudes.
51
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Fig. 3.4. Distribution of mean air pressure
by altitude, half-years, and longitudinal
ZONnes :
Middle latitudes: warm period (1) and cold
period Eeg; northern latitudesg: warm
period (3) and cold periocd (4)

Fig. 3.5 gilves the results of comparing the mean air pressure
values with the pressure based on the SA-64 Standard Atmosphere.
As rolTows from Fig. 3.5, up to the altitude of 40 km in the mid-
latitudes, the mean pressure somewhat exceeds the standard pressure.
An exception is representedﬂby a narrow layer near the 20 km level. /6n
Above 40 km the mean pressure in the cold half-year in the mid-
latitudes becomes less than the standard. In the warm half-year
at these latitudes the mean pressure remains higher than the stan-
dard, where above 50 km the difference between them grows. In the
high latitudes in the warm half-yelAr the mean pressure up to the
altitude 45 km is 5=7# smaller than the standard. Above 45 km the
difference hetween them becomes positive and rises sharply with
altitude, exceeding 40% at the altitude E0 km.

In the cold half-year the mean pregssure in all of the atmo-
spheric layer considered 1s below the standard wvalue in the upper
latitudds., With increase in altitude, the difference between the
values steadily rises, reaching 20% at the altitude 55 km.

Table 3.3 presents the mean pressure values az well as the
pressures from the CIRA-196% model.
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Fig. 3.5. Deviation of mean air
préssure from standard value:
Symbols as in Filg. 3.4

\

Data given in Table 3.3
showed that in the warm time
of the year the mean pressure
at the stations exceeds the
pregssure based on the CILRA-
15365 Standard Atmosphere.

In the cold period the oppo-
sifte pilcture is obazerved.
Particularly large differences
occur at the high latitudes.

The |possible limits to
the variagbilify of alr pres-
sure at different altitudes
can be judged from the data
given in Fig. 3.6; here are
shown the relative deviatiocns
of the extremal pregsure
values observed over the
North American continent in
theperiod 1961-1966 of the
mean value. From Fig. 3.6
it follows that in the high
latitudes there are greater
extremal deviations than in

'TABLE| 3.3, MBEAN PRESSURE VALUE p AND PRESSURE

-

ACCORDING TO CIRA-1965 (mb)

White Sands / Fort_Greeley |
POH May f ()(;'l;obe;\:}2 May } October |
dm | 7 |cirawes| 7 |ciraams| 7 [CiRAass| 5 | CrRA-ises |
! 30 | 12,541 | 12,100 | 12,186 | 12,500 | 12,550 | 11,300 | 11,509 | 12,900 /
| 35 | 6162 | 6,000 | 5877 ] 6150 | 6,000| 5,300 | 5,384 | 6,310
[ 40 | 3,180 3,030 [ 2,919 3,120 | 3,110 | 2,620 | 2,607 | 3,200
1,701 | 1,570 | 1,514 | 1,650 | 1,660 | 1,350 | 1,302 | 1,670

50 | 0,962 0,83 | 0,817 0,887 | 1,060 | 0,720 | 0,685 | 0,89
{55 | 0540 | 0,445 | 0,437 | 0,476 | 0,630 0,380 | 0,356 0,482
© 60 | 0,281 0,230 | 0,230 | 0,248 | 0,341 { 0,19 | 0,206 0,254 0,

the midale latitudes.
half-year period.
are detected,

egual to 50 and 60%, respective

The largest values
In the stratosphere two maxima of deviatlons
: one of which lies in the 25-35 km layer, and the

other lies in the region of the stratopause.

ly.

are nceted in the cold

These maxima are
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‘the curves in Figs.

The curves corresponding to the negative exireme of deviations /65
of pressure from the mean do not exhiblt so well-defined differ-

ENces.,

However, we can trace the maximum in the mid-latitudes at

the altitude of about 40 km, and in the upper latitudes at the

altitude of about 50 km.

The data in Fig. 3.6 further indicatei”

that in the stratosphere and lower mesosphere the pressure can

vary within appreciable limits.

These changes can attain 80-100%

in@the stratosphere and 100-120% in the mesosphere.

Fig. 3.6. Deviations in extremal pres-
sure values from the mean.

Symbols as in Fig. 3.4.

The large changes in

alr pressure in thege gtmo-

spheric layers are indi-
cated by the root mean
square deviationsg’lof pres-
sure given in Fig. 3.7 in
ratios to fhe mean pres-
gure at the corresponding
altitude. From Fig. 3.7
it follows that the root
mean squars deviations of
pregaure in the upper
latitudes have a larger
value than in the middle
latitudes. At | the curve
shown in Fig. 3.7 two

maxima are clearly evident,

which lie in|the 30-40

“and 50-60 km layers, that

ig, they coincide with
the maxima at the curves
of' the extremal devia-
tions. The root mean
square deviations here
are 15-20 and 20-30%,
respectively.

The general pattern of varlation in the mean air density with
altitude as a function of half-year and latitude is similar to the

pattern of change in pressure.

Figs. 3.4 and 3.8,

den51ﬁy with altitude above the North American continent.
3.4 and 3.8 also have appreciable differences.

This is evident if we compare
In Fig. 3.8 is shown the variation in mean

However,

The most important difference is a large mean air density in the

high-latitude troposphere compared

to the mean density of air in

this atmospheric layer in the middle latitudes.

Theae data indicate that the smallest mean air density in the

stratosphere and lower mesosphere occurs in winter and the northern
The hlghesﬂ mean alr density in the stratospﬂere ig

latitudes.

obgerved during the warm half-~ysar in the middle latitudes. This
phencmenon can be traced up to an altitude of approximately U0 ki,

that 1s, just as for air pressure.

/65



The density of the atmosphere can undergo appreciable fluc-

tuations ahout the mean.

Thig 18 clearly seen in Fig. 3.9, where

the relative deviations of the extremal air density is observed
in the period of 1961 to 1966 from the mean values are presented.

They are especially large

in the high-latitude stratosphere in

the cold half-year, although in.the middle latitudes even in  the
warm halfﬂyeaf at some levels they exceed 20% in the upper lati-

tudes. The curves of the

extremal deviations have ftwo well-

defined maxima, one of which is at the altitudes 25-30 km, and
the second -- at the altitudss 45—j0 km. These maxima are espe-
cially large in the northern latitudes in the cold half-year.

At the altiftude 30 km the

density of the air can exceed the mean

by ©60%, and at the altitude 45 km -- by approximately 70%. There-

fore, if we congider that

the deviation oi" the minimum air den-

3ity is from the mean, the density 1n the stratospheres can vary
by 50-70%, and in some altitudes -- by 100% or more.

.
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Fig. 3.7. Root mean SQuare |

deviation of air pres-
surs
Symbols as in Fig. 3.4

The density of air in the stratc-
sphere can varyigulte rapidly. In
Fig. 3.10 is presented the altitude dis-
tribution of the root mean sguare changes
in air density (sguare rcots of the time-
based structure functions) over a 24-
hour time interval. Fig. 3.10 shows that
in the course of a 24-hour day in the
mid-latitude stratosphere Lhe air den-
sity has a variability of 7-12%, while
in the upper-latitude stratosphere --
10-17%.

The high variability in alr density
in this atmospheric layer is indicated
by the root mean sguare values of devia-
tionhs, shown in Fig. 3.11. From the
data presented, it can be concluded that
the root mean square deviations of alr
ﬁensity in the troposphsre’are relatively
gmall and amount to 2-5%. With increase
in altitude, they ¢limb, exceeding 10-
15% in the stratcsphere and 20-25% in
the lower mesospherg.

The nature of the distributlion of
alir densities in the 70-80 km layer can
be judged from the data in Table 2.4,
The values given there were obtalned

by averaging alr density data for two groups of latitudes in the

North American continent.
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Fig. 3.8. Disftribution of air density by alti-
tude, half-year, and latitudinal zone
Middle latitudes: warm period (1) and cold
period 523; northern latitudes: warm
perlod

3) and cold perilod (&)

From Table 3.4 it follows /69
that at the altitude 70-80 km
the difference between the
maximum and the minimum values
completely proves to be larger
than the mean density as such.

In the period 1963 to
1964 13 atmospheric soundings
were conducted over Kwajalein |
Island (99 24" N, Lat; 167°
39" E. Long) using meteoro-
logical rockets, which reach
the altitudes of 100 km.
Prom the data of these ascents,
mean values were obtalined for

ey 1 Y P D BT =, air density, as well as
=0 -1 g 20 30%%€§jﬁ extremal and root mean square
Fig. 3.9. Deviations of extremal deviations. These values
air densities from mean can naturally-asplr? only
Symbols as in Fig. 3.8. to the rule of approximate

ceatimated characteristics
(Tabie 3.5).
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Fig. 3.10. Variability din Root mean
air density in a 24-hr sguare deviations of
interval. Symbolsisee Fig.3.8 air density. Symbols:
see Fig. 3.8.
TABLE 3.4. MEAN EXTREMAL VALUES TABLE 3.5 HEIGHTWISE DISTRTBUTION OF AIR
AND ROOT MEAN SQUARE DEVIATIONS DENSITY IN 80-100 KM LAYER FROM DATA
OF ATIR DENSITY (g/m3 ~ OF 13 SOUNDINGS

Fig 3.11

‘ 7 e - o . J, — 3} Pmai_}: Fmiﬂ-—‘; 2 3 “U_IP_ 5
L“ H ]]N;. ) Pmin Pmax Fa —;E- % k:m‘ P g/m ' ] * ) % ¢ g/m 3
! lenoasii ' P (
: e

eas, 00836 20,0 —14,7 0,00074 8,9
70 | a2 Jo,120 fo0ss |00 0ol 101 oo | 00374 0.2 ~10,1 0,00023 6.6
50 | 25 [0,0196|0,0106 [ 0.000{0,000| 03| g5 | ¢ ogreg 30,0 Tat0 0.00025 158

100 | 0,00053 17,1 ~17,0 0,00006 10,6

TABLE 3.6. DENSITY VALUES| FROM ROCKET SOUNDINGS
AND METEOR PHOTOGRAPHY (g‘/m )

_— j p l :Z
o .
from rocket| .

km somdlngqj from meteons
85 " 0,00836 000912
90 - 0,00874 0,00357
95 0,00158 0,00112

100 0,00053 0,00054

Table 3 6 presents for comnérlson atmospheric density wvalues
‘from rocket soundlnge]over Kwa jalein Island and by photographing
meteors over Kiev (see Section 1. 3)

The values in Table 3.6 show that the dendities from rocket
sovndings and meteor photography agree well with each other.
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Of interest are the results of comparing the mean density of
alr with the standard density based on the SA-64 standard atmo-
sphere, shown in Fig. 3.1. In the middle latitudes up to an alti-
tude of 10 km, the mean air density proves to be lower than the

standard. Above this level up to the altitude of approximately VAL,

35 km 1t exceeds the standard in both hall-years. Above 35 km

the mean density remains larger than the standard in thé warm
half-year. The maximum difference between them occurs at the
altitude 55 km and is 13%. In the cold half of the year above

35 km the mean air density becomes less than the standard. With
increasgse in altitude, the difference between them climbs, reaching
12% at the altitudes!|60 km,

In the high latitudes
the mean air density is
larger than the standard
value -in/ the lowest ftropo-
spheric layer. Above 5-7
km and up to the altitude
of 45 km, the mean air
cdensity in the cold and
warm half-years proved to
be less than the standard.
Apove 45 km in the warm
half of the year the mean
denslity again becomes
larger than the standard
and the difference between
them rises sharply with
altitude. At an altitude

4 of about 55 km it is alrecady
30% higher than the density
based on the standard atmo-
sphere. In the cold half-

1 1 i
20 088 o,

d Pst] year the mean air density
B - LT above 45 km 1n the high
Fig., 3.12. Deviations of mean air latitudes remains less than
dengity from the standard value the standard. With increase
Symbols as in Fig. 3.83. in altitude, the difference

between them rises, reaching
o a maximum of 20% of the alti-
R L%WW tude 55 km.

Table 3.7 gives the deviations of the mean air density from

' thd standard based on sounding data over Kwajalein Island.

The data given abowe characterize the deviations of the mean
values of air density from,the standard value. ‘Howeve&, it is of
interest to find how often particular deviations from standard
values can be observed. An idea of this can be afforded by



TABLE 3.7. DEVIATIONS OF AIR DENSITY /71
FROM STANDARD VALUE OVER :KWAJALEIN |

ISLAND
i 3;?5 M7 80 8 90 95. 100
" N
=Sty 85,9 W05 6,7 —a.0 TJ7 443 —1,2 / ]

St - —

it r

{
;histogra@s of the deviations of air density in the stratosphere
and lower mesosphere. In Fig. 3.13 are shown histograms of the
relative deviationg of air density for the warm half-year in the
middle latitudes. They indicate that at the altitude of 20 km
the deviations from O to -10% have the highest incidence. Begin-
hing®at the altitude 25 km the maximum ihcidence shifts to the
gradations O to 10%. Up to the altitude of 40 km it is approximately
60%. Above 40 km the incidence of the deviations exceeding 10% in
abgolute value rise sharply. Histograms for cold half-year in the
middle latitudes and warm half-year in the upper latitudes are of
gimilar form.

Altogether different is the pattenﬂ of the histograms for
the high-latitude cold half-year (Fig. 3.14). The difference
cetween them is that at these levels the center of distribufion
shif'ts toward the region of negative gradations and does s0 more
strongly, the higher the level. This indicates that in the vast
mgjority of cases in the cold}half—year there are negative devia-
ticns of air density from standard values. Quite offen cases are
encountered when the air density proves to be 40, 50, and even
60% lower than the standard value.

Table 3.8 presents for compariscn the mean air densities over
the White Sands and Fort Greeley stations and the air densities
based on the CIRA-1965 Standard Atmosphere )

L

TABLE 3.8. MEAN VALUE OF DENSITY p AND AIR DENSITY
. FROM CIRA-1965 (g/m3)

. White Sands L J Fort Greeley [
Ho| May ! October | May | October |
km’ 7 | crraaes T | ClRA-1965| 7 | oiraanes T | ciracwess

301 18,779 | 18,500 | 18,761 | 18,700
35 8,772 8,680 8,738 8,500 8,683 8,460 8,240 8,00
40 4,264 4,250 4,073 44250 4,129 3,980 3,546 4,020
45 2, 16 2,160 1,989 2,130 l 2,116 [ JO80 1,803 10104

19,002 | 18,900 | 18,032 [ 19,700

5001 1,203 1 B4 10055 | G130 | 1327 L 1080 | el | Lo
55 1 0,670 1 0,622 1 0,573 | 0,627 | 0,790 | 0615 | 0,470 ] 0550
GO | 0,353 | 0342 | 0,307 | 0346 | 0,428 | 0347 | 0274 | 0,290

59



o ‘}[zé
§0F 20 knj L,
’ !
“0}- ;
20r %
g i 1 L i 60 r
60 - « km
5 km 4OF
" wof
: 20 :
Lo20b
o 1 1 —1 ‘_—|—=_
) B N 60 1
i —-F - s kn
E; 80 - 40 '
.'1’0_ 1‘5"9 l
el 20~ —
20+ Fi] ] | I
: t . 60r
S L _—l'—=__l 55  km
| ﬂ'ar B “0r
L‘ 35 ki
F 4o 01
|
“ 20k ag c— o,
il -
I o — 1 o0 &0 Igfn
i w
20 . 20 _
|:’ 2 r—{_ ) —— I po ‘to == .—I { lg_p_lggt':‘r
CTRg 30 20 0 0 10 20 30 403—9-5‘/{, -40 30 -20 -0 0 10 20 30 41 S0L=
o ! - - e . Pste fh_
- st 5T
Fig. 3.13., Histogram of deviations of air density from standard.
" Warm half-year, middle latitudes
From Table 3.8 it follows that over both these stations in /S7h

May, the mean density exceeds the CIRA-1565 density, and does so
by a fairlly large value in the high latitudes. In October the
opposife picture is observed. Both in May and October, the great-
est differences between these densities are observed in the high
latitudes.

These results of a comparison cof temperature, prsssure, and
alr density with the SIA-64 and the CIRA-1965 models show that
even the space-time model of the CIRA-1965 atmosphere that 1s more
physically substantiated does not adeguately reflect the actual
distribution of the physical parameters of the atmospheres.
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value. Cold half-year, high latitudes

3.3. Correlation Matrices of Témperatureigfressure, ahd Air Density

The first block of the principal diagonal of the generalized
covariant matrix (Fig. 3.6) is an autocovariance jmatrix of air temper-
ature. It is a symmetric matrix, along whose principal diagonal
allocated the values of the temperature dispersions at altitudes.

To this matrix there corresponds the autocorrelation matrix of
femperaturs.

Autocorrelation matrices are conveniently represented for
purposes of analysis in the form of autocorrelation functions.

Autocorrelation functions of temperature have several charac-
teristic features. They are shown in Figs. 3.15 and 3‘16 for ths
middle-@and high latitudes of North America. The numbers alongside
the curves in the figures dencte the altitude in kilometers of
the initial correlation level.
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Autocorrelation functions of temperature for the middle lati-
tudes whose initial correlation levels lie in the troposphere {(in
the folliowing we will call these functions troppspheric, 1n contrast
to stratospheric functions, that is, functlons Witﬁ the initial
correlation levels located in the stratd@phere) have approximately
identical form in the warm (Fig. 3.15 b) and cold (Fig. 3.15 a)
half-year., They are characterized by the fact that wlth increase
in azltitude the correlation in the troposphere decreases rapidly,
reaching zero at the altitude 10-12 km. Above this level the
correlation becomes reciprocal. The maximum reciprocal relation
is observed at the altitude 15 km. These values of the autocorrela-
tion function indicate that a rise in temperature at the altitude
15 km usually accompanies its decrease at all levels.

Stratospheric functions in the cold perilod and functions with
initial correlation levels of 15 and 20 kmiin the warm period are
identical in form and indicate a fairly rapid decrease in the
correlation with altitude. Stratogpheric functions with initial
correlation levels above 20 km in the warm half-year decrease
more slowly with increase in altitude.

In the high latitudes, the autocorrelation functions of tem-
perature corresponding to the 3 and{6 km initial correlation levels
also decrease rapldly with altitude, however, the peciprocal cor-
relation, whose maximum as in the middle latitudes occurs at the
altitude 1% km has a smaller value. The pattern of the correla-
tion of temperature in the stratosphere in the cold (Fig. 3.16 a)
and warm (Flg. 3.16 Db) nalf-years in the high latitudes is identi--
cal and is similar to the pattern of the correlation in the warm
period in the middle latitudes of abovel 20 km.

Thus, in the graphs of the avtocorrelation température fune-
tion we can distinguish four groups\of curves, The first and the
second groups refer to the initial levels of correlation located

An fhe troposphere for the middle and high latitudes, respectively.

The\third group can encompass the stratospheric burves for ths
cold half-year and functions with initial levels of 15 and 20 km
for the mid-latitude warm half-year. Finally, the fourth group
includes the autocorrelation functions of temperature for the mid-
ljatitude warm half-year with 1nitial correlation levels of above
20 km, and alsc for the high-latitude warm and cold half—yeaﬁ with

initial correlation levels located in the atmogphere.

Autocorrelation matrices of pressure, as the above-described
matrices of temperature, are also conveniently represented as auto-
correlation functions. These Tunctions have several features.

In the middle latitudes in the cold half-year (Fgg. 3.17), the auto-
correlation functions of pressure for which the initial correls-
tion levels are in the troposphsre decrease rapidly. Above 25 km
they agalin begin to rise somewhat. Stratospheric autocorrelation
functions beginning at the altitude 30 km indicate the smoother

[15
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Fig. 3.16. Correlation func-

tionsg of temperature for

the cold (a) and warm {b)

half-~years of the high lati-
tudes

decrease 1n the correlation of pressure abt the lower-lying levels /

with pressure.at the high altitudes.

In the high latitudes the

nature of the correlation of pressure and different levels is

approXimately the same.

Autocorrelation matrices of air density are also, as is true L78
of autocorrelation matrices of temperature and presaure, the
corresponding blocks of the generalized matrix (3.7). Figs. 3.18
and 3.19 show the autocorrelation matrices of air density for the
middle and high latitudes in the form of autocorrelation functions.

Ag belore, these numbers alongside the curves denote altitudes[in
kilometers of the initizal correlation levels. '
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In the middle latitudes in .
the cold (Fig. 3.18 a) and Fig. 3.18. Correlation functions
warm (Fig. 3.18 b) nalf-years, of alr density for the cold (a)
functions with 3 and 6 km ini- and warm (b) mid-latitude half-
tial correlation levels decrcase wears

rapidly with increase 1n altitude,

reaching zerc near the altitude

of 10 km, and then take on a negative value of 0.5-0.T7 at the zlti-
tude 15 km. Corresponding functions belonging to the cold (Fig.
3.19 a) and warm (Fig. 3.19 b) high-latitude half-year differ from
the above-indicated functions only by their smaller value at the
minimum point. If we consider the aubtocorrelation functions of

alr density with initial correlation levels above 9 km, we can see
that they are of the same patfern in both half-years and lathitudi-
nal zoneg. Therefore, all these functions can be cldsged in three
groups. The first group includes tropospheric autcocorrslation
functions of [air density for the middle latitudes, the second --
tropospheric autocorrelation Tfunctions of ailr density for the high /79
latitudes, and the third -- all these stratospheric autocorrela-
tion functicons of air density in both latitudinal zones and both

half-years. .



Now let usg turn to the)
reciprocalfcorrelation matrices
of temperature, plressure, and
air density. The reciprocal
correlation‘maprices are eon-
veniently represented as fields
of isocorrelation. These fields
make 1t possible to graphically
represent the regions with dirf-
ferent degrees of correlation
between these atmospheric para-
meters within the limits of the
1520 25 30 95 W atmospheric layers under study.
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Reciprocal correlation
matrices of aijir pressure and
temperature for the cold and
warm half-years in the middle
latitudes are show) in Figs.
3.20 and 3.21. They have the
following features:

' 1. The air pressure in

the upper part of the tropo-
‘ ’ sphere as & cloge positive

Fig. 3.19, Correlation func- correlation with temperature

tiong of alr density for the at the lower-lying levels.
cold {(a) and warm {(b) half- : .
vears of the high latitudes 2. A relatively narrow /80

atmospheric |layer is observed

near the 15 km level in which

the femperature has a fairly
negative correlation with the pressure at the lower-lying levels.
In the 10-15 km atmospheric layer there are very large vertical
gradients of the correlation coefficient.

3. In the stratosphere the alr pressure at the levels 40-50
km exhibit a positive correlation with air temperature at the
levels 25-35 km.

In the high latitudes the reciprocal correlation matrices of
air pressure and temperature (Figs. 3.22 and %.23) differ somewhat
from the analogous matrices for the middle latitudes. These dif-
ferences pertaln mainly to the stratospﬂgre and amcunt to the follow-
ing: 1) at the boundary between the stratosphere and troposphere
there is no reglon with a large negative correlation between pres-
sure and ftemperaturs; 2) in the cold half-year @he region with high
positive correlation between pressure 1n the upper stratosphere
and temperature in the 30-40 km atmospheric layer is obgerved;
3) in the high latitudes the correlation between pressure in the /82
'str@tosphere and temperature at lower levels is even closer,
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Fig. 3.20. Field of isocorrelations rpt(H, H!)
in the mid-latitude cold half-year |

Figs. 3.20-3.23 clearly show also the values of the elements
lying along the main diagonal of the reciprocal correlation
matrices of pressure and temperature characterizing the statistical
reclationship between the physical parameters of the atmosphere at
the same levels. Also, from these figures it follows that the
1Q km correlation coefficient between temperature and pressure is
0.6-~0.7. With increase in altitude, the correlation between them
falls off and 1in the stratosphere changes little, where in the
middle latitudes it is virtually absent, while in the high lati-
tudes if one considerd™ the bursts at the altitude 35 km in the
warm half-year, it is small. In the middle latitudes there is
a high negative correlation in both half—year“at\ the altitude
15 km.

Reciprocal correlation matrices of air density and temperature
have a number of interesting Ifeatures.

Figs. 3.24 and 3.25 show the reciprocal correlation matrices
of air density and temperature for the warm and cold half-year
in the middle latitudes. From these figures it follows that )
the warm and cold half-years have an analcgous structure. In the
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in the mid-latitudédwarm halif-year

troposphere we cbserve a high reciprocal relationship between air
temperature and density. A second locus of the reciprocal correla-
fion occupies the atmospheric layer from 10 to 20 km and extends
along the principal diagonal. In the isocorrelation field we
observe a locus of a very high positive correlation. It indicates
that an increase in air density in fhe tropospghere correspends to

a risge 1n temperature at altitudes cloge to 1% km. In the strato-
sphere above 20 km the correlation between alr density and tempera-
fture is very low.

The isocorrelation fields for the high latitudes (Figs. 3.26
and 3.27) differ widely from the above—eonﬁiﬁéped fields. This
difference lies in the fact that first of all the regions of posi-
tive correlation between density in troposphere and temperature
at_its boundary with the stratosphere are less intense, bhut have
greaten extent and consist |of two loei, one of which is at the
altitudes 10-12 km, and the second -- at the altitudgs 17-22 km.
Secondly, the air density in the stratosphere in the 20-40 km
layer has a fairly high correlation with air temperature at the
altitudes 35-40 km. :
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The values of the diagonal elements of the reciprocal correla-
tion matrices of ailr density and temperature characterizing the
extent of these statistical relationgship between these physical
parameters of the atmosphere at the same levels indicate that be-
tween the air density and temperature at fixed levels there is a
high reciprocal relationship only in the middle latitudes up to
the altitude 20 km, while in the high latitudes this is true only
in the lower and middle troposphere. Higher up, the correlation
between them virtually disappears.

_ Now-let us turn to. Jthe reciprocal correlation matrices of air /87
density and pressure. They are shown in Figs. 3.28-3131 in the
form of flelds of isocorrelations for the warm and cold‘half-years
of the middle and high latitudes. All the matrices presented in
fhese figures have the same properties, which are that in the
troposphere the correlation between alr density and pressure is
low. In addition, a small locus of negative correlation coeffi-
clents occupies the lower left section of the isoborrelation
field and indicates that a decrease in air density in the upper\
tropoephere and in the lower part of the stratosphere usually
accompanies a pressure rise in the lower troposphere. Above the
tropopause 1s located an elongated zone of very high correlation
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coefficients between air density and pressure 10 km and more
in thickness, where the maximum values lle along the principal
diagonals of these matrices.

The above-noted features of the mutual correlation matrices
reflect the physical relationships that are characteristlc of the
atmosphe re. Several of these features, ag for example the high
correlation coefficlents between pressure and temperature at the
lower—lyﬂng levels and others are predictable, while the rest thus
far h&v% not. found any convincing explanation.

3.4, Statistical Characteristics of Wind in Dense Atmospheric
Layers

Let us examinb as statistical characteristics describing the
vertical gstructure of the wind field in dense atmospheric layers
the niean values of the meridiconal and zonal components of wind
veloclty, the root mean square deviations, and the ortho- and
reciprocal correlation matrices. The above-listed statistical
characteristics were obtained on the basis of atmospheric rocket
sounding data, briefly characterized in Section 3.1.

For these two half-years, the altitude distribution of the
mean values of the zonal v and meridional u wind velocity compo-
nents is shown in Figs. 3.32 and|3.33.

In the middle altitudes (Fig. 3.32), in the cold half-year
the zonal component is peositive in the entire atmospheric layer
under con51deratlon, which is accounted for by the prevalence in
the lower TO#km atmogpheric layer of a westerly transport, caused
as indicated above by the circumpolar cyclonic eddy. In the tropo-
sphere the westerly component rises with altitude, reaching its
maximum at the altitude 10 km. Above 10 km the westerly component
diminishes and the main value occurs at the altitude 20 km. Above
20 km the westerly component begah rises and becomes 68 m/sec at
altitudes 70 km.

The meridlonal jcomponent in the entire atmospheric layer to
70 km 1s positive and has a relatively small value. The largest /88
value of the meridional component occurs at the altitude 50 km
and reaches 11.3 m/sec. Thus, in the middle latitudes the westerly
transport with a small southerly c@mponent prevails in the cold
half-year.

In the warm half-year the meridional component in the middle
latitudes is alsc posgitive, but has an even smaller value.

The zonal component of the wind in the warm half-year rises

with altitude in the troposphere. Its maximum, 11 m/sec, occurs,
as in the cold halfl-ysar, at the altitude 10 km. Above this level,
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B
the westerly component diminishes and becomes equal to zero at an
altitude of about 18 km. A further inecrease in‘altitude is asso-
clated with the reversal and growth of the zwonal component. It
reaches its maximum value, 32 m/sec, at the altitude 70 km. There-
fore, in most of the stratosphere in the warm half-year quite
intense easterly transport of air masses is observed.

. ﬁlﬂ -2:9 0 2’9 @mu,m,,-. m/ seé,' f - - - [/ HIJ Ztl?m.,.m,{ m/? ec
Fig. 3.32. Mean values[of Fig. 3.33. Mean values of
the wind velocity compo- the wind velocity compo-
nents., Middle latitudes nents. High latitudes
1. cold period 1. cold period
2. warm Jperiod 2. warm period

In the high latitudes (Fig. 3.33) the zonal component in the
cold half-year has the followlng features. Just as in the middle
latitudes, it is positive up to the altitude 10 km and rises wlth
altifude, while 1t remalns nearly unchanged in the 10-20 km layer.
Above 20 km an increase occurs in the velocity of the westerly
wind. At the altitude 55 km it reaches a maximum, 28 m/sec. A
decrease 1in the zonal component accompanies a further increase
in altitude, where at the altitude 75 km 1t becomes negative and
rises with altitude.

The meridional wind veloclty component is negative throughout
nearly thelentire 70-km atmospheric layer. Its greatest value,
-18 m/sec, lies at the altitude 70 km.

In the warm half-year the zonal component of wind velccity
in the troposphere in the high latitudes 1s also positive upiito
the altitude 20 km. Above this altitude its reversal and increase

\
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is observed. ’The largest negative value of the zonal components
(-15 m/sec) occurred at the altitude 55 km. Upwards of this, 1t
again becomes positive and rises. . ’

The meridional component is positive Jand small in the entire
atmospheric layer under consicderation. Only above 50 km does it
rise appreciably, reaching 50 m/sec at the altitude 70 km. The
values of the wind veloeility components indicate that in the warm
half-year in the high latitudes easterly winds algo prevail, which
in the lower mesosphere change infto westerly winds.

By comparing Figs. 3.32 and 3.33 with|the time profiles of
the wind field for 30 and 60° N. Lat {see Fipgs. 2.1 and 2.2), we
can note that the altitude distributions of the wind veloccity
components averaged by half-years agrees fully with the time
profile., The somewhat smaller maxima of wind velocity components
are assoclated with the additional smoothing qccurring during
averaging by half-years and by latitudes. ‘

Fig. 3.34 shows the variationwith altitude of the root mean
sguare deviations ¢f wind veloelty in the middle and high lati-
tudes. The graph showed that the distribution of the root mean
square deviations of the wind velocity components differs in the
different zones. In the middle latitudes tThe root mean squane
deviations of the wind velocity components are nearly identical
up to the altitudes 20-25 km in the cold and warm hali-years.
Above these levels, the root mean square devlations of the zonal
component become larger than the meridicnal, by a factor of 2-3.
Here the root mean square deviations of the wind veloeclity ccomponents
in the cold half-year exceed their values in the warm half-year.
The largest value of the root mean sqguare deviations of the meri-
dional component (22 m/sec) 1s observed in the cold half-year at
the altitude 75 km, and the zonal component (33 m/sec) -- at the
altitude 60 km.

In the high latitudes the altitude distribution of the root
mean square deviations of wind veloecity components in the cold half-
year differs appreclably from their distribution in the warm halfl-
year. While in the warm half-year the ratios between the root mean
55quare|deviations of zonal and merldional compconents aPE‘neafly
the same as 1in the middle altitudes, in the cold half-year the root
mean square deviations of both components are nearly identical in
the entire atmospheric layer under study.

- Generalized covariance ! and correlation:matrﬁoes of the wind
veloclty, as shown above, consist of four blocks. DBlocks located
along the principal diagonals of the genecralized correlation
matrix are autocorrslation matrices of the zonal and meridionzal /90
wind veloclityrcomponenta. IFor purposes of analyzing the matrices,
lei us represgent also in the form of autocorrelation functions.
Let us look}at gsome features of these functions.
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., Fig. 3.35 shows the autocbrrelation functions of the zonal
ry{AH) and meridional r, (AH) wind velocity components in the mid-
latitude coldihalf—year. IFrom Fig. 3.35 it follows that the func-
tions ru(AH) with 5-20 km initial correlation levels, and the
functions are settled with 5-25 km initial correlation level (the
altitudes of the initial correlationtlevels in kilometers are
given alongside each curve) are of identical form. Above 25 km
the correlation of the zonal compcnents falls off more slowly with
altitude.

] fi;'{ff} 5 0015 0 25 30 35 40 ¥ 50 55 3&1
aﬂha) ‘7
a4_ A
0 ] J I i i i
0 20 ~m5§;~w ] 50

ru(#) 5 10 15 20 25 30 35 40 45 50 55

@ % 0 @ Wouoy m/sec J
‘Fig. 3.34. Roof mean square Fig.'3.35. Correlation functions
devliatilons of wind velocity of zonal (a) and meridional (b)
components wind velocity components in the
a. middle latitudes mid-latitude cold half-year

b. northern latitudesg

Autocorrelation functions of wind velocity\components for the
warm half-year are shown in Filg. 3.36 for the middle latitudes:
from this figure 1t is clear that in the warn halﬁ~year the patternJ
of' the variation in correlafion with altitude shown by meridional
and zonal components is different. If the functions for the meri-
dioral components with 5-15 km initial correlational levels are of
the same form as in the cold half-year for the same altitudes, func-
tiong with Initial correlation levels higher than 15 km indicate
a rapid falloff }in the correlation of the meridional components [gg
with increase in altitude. Conversely, autocorrelation functions
of these zonal component decrease very slowly.
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In the lcold half-
year the autocorrelation
of the zonal (Fig 3.37 a)
and meridional (Fig.

3.37 b) wind velocity
components in fthe high
latitudes are virtually
identical in form through-|
out this entire atmo-
spheric layer.

In the warm half-
year the autccorrelation
functions of wind velocity
components in the high

| OA)- latitudes are virtually
B analogous to the corres-
ponding functions in the

o p—t— middle latitudes in the

Fig. 3.36. Correlation functions of
and meridional (b) wind |

zonal (a)
velocity components in the high-
latitude warm half-year

|
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1

Warm‘half—year. The
correlation hetween the
meridional components

(Fig. 3.38 b) with inecrease
in altitude above 15 km
falls off very rapidly,

but between these =zonal
components (Fig. 3.38 a)

-- very slowly in this
entire atmospheric layer.

If we consider jointly all autocorrelation functions of wind
velocity components, we can note that thelir| entire set can be sub-
divided intojiour homogeneous groups. The first'group includes
the autocorrelation functions of the meridional wind veloclty com-
ponent for the warm and cold half-years in the middle latitudes
and for the warm half-year in the high latitudes, and the zonal
component for the mid-latitude cold half-year, which has 5-20 km
altitudes for thelr initial correlaticn levels. The second group
contalns the sutocorrelation functions of the meridional wind
velocity component with initial correlation levels higher than
20 km for the middle and high latitude warm half-year. The third
group unites all the autocobrrelation functions of the meridional
and zonal comporents in the mid-latitude cold half-year with
initial correlation levels higher than 20 km. Finally, the fourth
group includes the autocorrelation functions of the zonal wind
velocity component for the.mid- and high-latitude warm half-year,
and also for the mid-latitude cold half-year above 20 km.

The reciprocal correlation matrices of the wind Velodity
components for both half-years and both latitudinal groups are
identical injpattern. This pattern amounts to the virtual absence
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of a correlation between the wind velocity components either at
the same levels or at different levels, within this particular
atmospheric layer {(Table 3.9).

TABLE 3.9. RECIPROCAL CORRELATION MATRIX OF WIND
VELOCITY COMPONENTS r,,(H, H'). WARM HALF-YEAR,
MIDDLE LATITUDES 2

i S
# knj’ 5 10 15 a0 25 30
L
D .21 0,20 0,10 0,00 0,04 0,02
10 0,22 0,25 0,13 0,02 0,03 —0,02
15 0,20 0.24 0,16 0,03 0,02 0,02
20 0,07 0,09 0,02 0,00 ~0,11 —0.06
a5 0,m 0,08 | 0,07 0,01 0,04 0,00
3 —0,12 —0,07 —0,03 —0,06 —0,06 —0,06
.35 —0,07 —0,03 0,01 0,04 —0,05 —0,05
C 4D —0,07 —0,00 —0,04 0,02 —0,04 0,02
45 0,11 0,14 0,08 0,10 0,12 0.12
50 —0,04 —0,03 —0,07 —0,01 0,01 0,03
. 55 —0,05 —0,08 —0,09 —0,03 —0,04 —0,07
L0 0,07 0,08 0,06 0,04 0,05 0,08
i H kme 33 20 45 50 k) 60
5 0,05 0,06 | 0,06 0,05 0,01 —0,03
10 0,02 0,02 0,00 0,01 —0,05 —0,04
15 0,08 0,06 0,02 0,04 —0,03 --0,06
20 —0,03 —0,06 § --0,04 —0,02 —,04 0,03
25 0,01 —0,01 0,01 0,03 0,01 0.00
30 -—0,08 ~0,11 —0,05 —0,03 —0,03 —0,01
; 35 —0,05 —0,04 —0,02 —0,12 —0,03 —0,01
, 40 —0,01 —o0,01 | 0,01 0.02 0,08 0,03
i 45 0,1% 0,2 |. 0,16 0,18 0,16 0,05
? 50 0,08 0,07 —0,01 0,08 0,09 0,01
; 55 —0,01 —0,04 —0,01 —0,07 —0,02 0,01
f 60 0.10 0,12 015 | oI 0,13 0,14

The above-degcribed features of the autocorrelation matrices,
of the altitude distributions of the root mean square deviations,
and the nature of the correlatlons between the wind velocity compo-
nents lead to the concluszion that the scatter of wind velocities
can be regarded as circular in the middle latitudes and in the warm
half-year in the high latitudes approximately to the altitudes
20-25 km, as well asz in this entire atmospheric layer during the

195



cold half-year in the high latitudes. In the remaining cases, the
gcatter of wind velocities has a well-defined ellipticity. | Here,
8ince the correlation between the wind velocity componentd is
virtually absent, the axes of the scatter ellipse coincide with
the axes of the standard coordinate system, which as indicated
above, was used for expanding the wind veloclity into components.

3.5, Precigion'of Determining the Statistical Characteristics of
the Physical Parameters of the Atmosphere

The values of the atmospheric parameters measured during the
sounding periods with meteorclogical rockets contain errors of
two kinds. The first kind includes systematic errors, for example,
dynamic and inertial. They are cancelled out by introducing appro-
priate corrections into the measurement data. The second kind of
2rrors -- random errors -- is conftained in the initial data. At a
result, the statistical characteristics calculated from these data
contaln certain errors. Also, since the statistical characteris-
tice were calculated for restricted sets, as indicated above, they
are estimates of the unknown functicns, that is, they have a cer-
taln precision. -

If we denote the random variable under study by x, then its
mean X obtained for some set fn will be the closer to its mathena-
matical expectation m, the larger the n. The difference between
them can be characterized by the root mean square error of the
mean 0y, which for normally distributed values of x ig defined by

the following expression:

I,
= = —i
I Vn

(3.22)

When the number of cases in the set under study is larger than
geveral tens, the difference between the biased zand unbiased
estimates virtually disappears._If we denote the dispersion of
the unknown random variable by Dy, then

m lﬁl] =D: D [z’f)_\_] = % o ) (3.23)

The right expression characterizes the precision of determining
the dlspersion of varlable x. Similarly, for the covariance of
random variablesf{ix and y we have

———

ﬂ- i . . - ) ‘ - . 2 |
miR | =Ry DR, =Dt

n

(3.24)
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The second formula of equalities (3.2&) allows us to obtain the /96

00t mean square error of the covariance

(3.25)

DYy T
S [R,] = Vi V1 +rf£_
We can also compute the precision with which the root mean square

deviation of the random variable % was calculated. To do this,
in the case of the normal distributlion we have the formula

L \ (3.26)

“x Van

The degree of approximation of the estimates to the unknown
statistical characteristics is customarily estimated by using
confidence 1ntervals. To determine the confidence intervals of
the computed statistical characteristic, we must assigh the proba-
bility wifth which the given characteristic will fall in these
intervals. 1If we aszume, for example, that this probability is
0.5 (this probably corresponds to the familiar rule 2 )J the
probability of the opposite event is 0.05.

Let us consider the variable

Then we can write that the probabllity is

P”k.lr/.’ko_,os}r:1_-‘q](k0.05):0‘05’ \ (3-27)

where -é(@wﬂ} is the probability integral.

The guantity k o5 can be found from appropriate tables and
is 1.96% or the specilied probability. Then Eq. (3.27) can be
written as follows:

P(]X;mxlﬁ;;l_geg}) = 0,0-51 ) (3.28)

Thig equality allows us to state that with a probab;lity .95,
we have

X — 1,963 <m, <X+ 1L960%. |
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'ﬁig. 3.37. Correlation functions Fig. 3.38. Correlation functions

of zonal (a) and meridional (b) of zonal (a) and meridional (o)
wind vecloclity [components in the wind velocity components in the

high-latitude cold half-year

TABLE 3.10. CONFIDENCE INTERVALS ,OF AIR DENSITY |
{g/m3), TEMPERATURE (°C), AND PRESSURE (mb) FOR
THE WARM- YEAR OF THE NORTH AMERICAN CONTINENT

| Middle latitudes ngh latitudes .
km} %=, ] 2y |y, ,2;, f 2 ] B | 2, i , Z"Jil 2y [ g j"-"if'r‘

3 [1,120(1,640]0,46| 0,64 0,392 0,560 |3,34114,870/0,92 11,36 /2,615 3,750
G 0,710 1,000 0,450,641 0,520 0,740 12,25t 13,236 1,10 | 1,56 | 1,894 | 2,694
9 0,700{0,994 {0,561 0,%0 | 0,561 0,802 (2,052|3,12210,78 [ 1,12 | 1,700 2416

high-latitude warm half-year

15 10,912 1,298 0,52{0.76| 0,310 | 0,444 | 1,500 | 2,130 | 0,62{ 0,92 | 0,885 | 126
20 10.23110,3350,4610,660,135 0,192 {0,374 0,528 | 0,62 0,42 | 0,258 | 0,368
25 10,3970,42210,470.67| 0,198 {0,274 | 0,412| 0,588 | 0,83 [ 1,18 | 0,281 | 0406
30 10,1080,154 10,56  0.82 | 0,073 | 0,106 | 0,396 | 0,566 { 1,48 | 2,12 | 0,250 | 0,400
35 10,058 10,08210,70/ 1,000,042 0,060 0,109 0,155 1,90 184 {0,090 | 0,128
40°10,059 0,084 1,101.56 | 0,043 (0,062 {0,076 0,108 1,20 | 1,84 {0,056 | 0.086
45 10,021 10,030| 0,83 | 1.2610,016 | 0,023 | 0,045 (0,065 | 1,33 | 1,94 0,035 0,050
50 10,011 10,016/0,98 1,40 10,009 0,013 0,034 | 0,048 1,43 | 2,04 | 0025 0,036
55 10,01410,0201 0,82/ 1,180,013 10,019 0,043 | 0,061 | 1,34 | 1,92 0,033 10,047
60 104004 {0,006]1,10|1.54 | 0,007 0,010 0,034 0,049 0,81 | 1,16 | 0,028 | 0,040

3

1
65 |0.00410,006)2,10{3,00]0,007 | 0,000 0,00810,0110,2070,28 0,008 {012 |
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Similar arguments can be presented also for determining the confi-
dence intervals of the root mean square deviations.

Table 3.10 presents the confidence intervals of the means
and root mean sguare deviatlons of air pressure, temperature, and
density that were considered above in“order to describe the features
of the vertical statistical structume of fields of these physical
parameters of the atmosphere.

The confidence intervals for the wind velocity components are
found in Table 3.11.

TABLE 3.11.| CONFIDENCE INTERVALS OF WIND VELOCITY |
COMPONENTS (m/sec). "NORTH AMERICA, WARM HALF-YEAR

Middlé Jatitpdes _ High latitudes |

‘. k| oy | s I 2ag, J Ty B3y, , L ’ I 2

bl l v A

51044 | 0,62 | 057 [ o082 | 1,00 | 142 | 1,3 | 1,00
100 0,7 | 102 | 090 | 1,28 | 1,58 | 2,9¢ | 2,16 | 3,08
15 1 063 | 0,90 [ 0,80 | 1,04 [ 082 | 1,16 | 098 | 1,40
20 ¢ 0.2 1 030 | 0,43 060 [ 060 | 0.86 | 1,08 | .54
% | 02 f 028 | 053 | 07 | 0,76 | 1,08 | 1.83 | 1.00
80 1 0.2 | 035 | 0,77 ¢ 1,10 | 0,5 | 0,8 | 164 | 2,4
35 1032 | 046 | 1,07 | 1,52 | 063 | 0,90 | 1,57 | 2,66
01036 | 042 [ 1,20 | 170 | 0,62 | o088 | 2,08 | 2,08
1043 | 0,66 | 1,50 | 2,12 | 075 | 112 | 2,84 | 4.0
50 | 034 | 048 | 1,76 | 2,2 | 074 | 1,06 | 2,84 | 4,2
55 1 0.6 | 070 | 1,92 | 2,74 | 098 | 1,40 | 3,73 | 5.32

A VI A 1.08 2,1 302 0,98 1,40 L& 2,68
6 1,10 1,42 1,18 1,68 0,45 1,64 0.0 1,04
70 | 3,81 5,51 2,30 3.30

From Table 3.11 it follows that these statistical characteris- /98
tics exhlbit a precision that is satisfactory for practical pur-
peses. The confildence intervals for the cold half-year differ little
from those presented above and therefore are not given here.

The root mean square error of the covariant matrix elements

r is determined by using the formula

xy
12 ]
g, = ——h—ﬂL,/ (3.30)



Obtained under the assumption that the law of the distribution of
variables is normal. An investigation by Fisher Z§l7 shows that
the probability density of the correlation coefficient r has the
following form:

dt

(3.31)

i ’ -1 a—1 1
— =2 . P o 3 E!!—-?
!f,, (M =""=(1=p%) ° (1—7r) UJ"“

—pr5yr =1

From Eq. (3.31) it follows that the distribution of the correlation
coefficients 1s 'not normal. It depends not only on the size of

the sample n, but also on the correlation coefficient of the general
gset rule. The distribution (3.31) approaches the normal distribu-
tion only for small r and for the large n. Under these conditilons,
Fq. (3.30) is also applicable.

To determine the confidence interwvals of tﬂe correla tion
coefficient, PFischer proposed the transformation

2= | (3.32)

The value of z even for small n is distributed normally with amea
mean and with dispersion, determined by using the approximate
equalities

|

"”[’Z]=E'i~ 2(,;'1_1);- De“':n._E; | (3-33)

where Ezzﬁ}1n14'F

- . - (3.34)

If we find the root mean sguare deviation of the z-transforma-
tion, we can determine the confidence interval of =:

""‘zlz'zggzg; \ (3.35)

where zp is the value of z for large n, and

Zy =2 —Rk3,,
29 =2+ ka,,

By determining zi1 and 25, 1t 1s not complicated by means of
transformation (3.32) to compute the values of ry and r, corres-
ponding te them for a specified probability. The latter defines
a precision of the computed elements of the correlation matrices.

‘Table 3.12 §éives the confidence intervals with a probability /99
0.67 of the elements of the correlation matrices of air pressure,
density, and temperature, and of the wind velocity components for
the warm half-year in the middle and high latitudes.
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{ togethern.

TABLE 3.12. CONFIDENCE INTERVALS OF

CORRELATION MATRICES. NORTH AMERICA,

{ WARM} HALF-YEAR

Middle latitudés

High latithdks

I

fy

—0,01
0,10
0,20
0,31
0,42
0,53
0.64
0,76

ra 2p u, v Pyp. bpu, 0
Lo 2 f ] ra 1

0,1 0,18 0,02 0,15 0.05 0,21
0,2 0,28 0,12 0,25 0.15 0,30
0,3 0,37 | 0,23 0,33 0,25 0,40
0.4 0.47 0.33 0,44 0,36 0,49

05 0,86 ¢ 0,44 0.54 0.46 0,568
0.6 0,65 0,55 0,63 0,57 0,67

. 0,7 0,74 0,66 0,72 0,67 0,75

. 0,8 0,83 0,77 4,82 0,78 0,84
0,9 0,91 0,89

0,9 0,89 0,92

From Table 3.12 1t follows that the highest error is charac-
teristic of the gmallest values of the correlation matrix elements.

ObS

|

|

Az their values approach unity, the precision rises appreclably.

The precigion of computing a number of statistical character-
igtics depends alsc on the random errors of messurement contained
in the initial data . From error theory we know that random errors
do not affect tc the value of the elements in the reciprocal corre-
lation matrices, since the errors of the data deallng with differ-

ent elements, as well asserrors at different points do not correlate

Moreover, the random errors exceed the dispersion _
elements of the autocovariande matrices by the value of the root |
mean square of the error. When interpreting the results of rocksat

sounding ol jthe atmosphere, we must also takeiZinto™account that

for the same Sdundihg the randoem errors of measurement,

of femperature, correlate with the measured value of the elememtj
cwing fto the accumulation of errors, one reason for which is the
inertia of the- trahsducers Ag a result, the values of the correla-
tion functions of air temperature obtaiﬁed in interpreting the

initial material proved to be overstated.

The most widely accepted
method of cancelling out random errors is extrapolation to zero of
single-level structure functions. The available initial material

doeg not always enable us to obtain these functicns and therefore
to use this technique. However, the random erro

if we use the preoperties of a simple Markov random process.
applicability to the atmosphere was shown by M. I, Yudin

DrOCESSs s

ad

Rtn. mi1~ %m%m -i-lrm.m +1y
' I
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can be determined
_Their

ve

The following equalltles are valid for the SJmple Markov

(3.36)

for example,

/100



In equality (3.36) the corresponding statistical charscteris-
tics obtained by the statistical interpretation of the initial data
are denoted with the sign ~ . Using equality (3.36), we can appro-
ximately determine the error contained in the estimates of the root
mean sguare deviations and cancel it out. Actually, assuming that
the errors in the values of the covariances are determined by errcrs
contained in the correlation coefficients, from equality (3.36) let
us determine the "true" value of the dispersion

o RusimioRe (mzz,z,_...).\ (3.37)

m+1 e
Rm,m+2

Then the dispersion of the random error 3i+l'oan be computed by
the formula )

(3.38)

2 g2 g?
Smi1 = Tk dr.r:+]'

—— — — —
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Fig. 3.39. Root mean square values of random
errors of air temperature

Fig. 3.39 shows the root mean square values of random errors
of temperature obtained by means of relations {(3.36) - (3.38). By
averaging the errors, we get the result that above 20 km the root
mean squares of the random temperature srrors average 2-37C. These
values agree well with the root mean square values of the random
temperature errors obtalned, for example, by V. P. Boltenkov, which
in the layer from the ground level to 20 km were found to be 1-1.4°C,
In conclusion, we know that after determining the dispersions of
the random errors it is not difficult alsc to correct the corres-
ponding correlation functionsg.
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CHAPTER FOUR
FORMS OF REPRESENTATION ;OF ATMOSPHERIC PERTURBATIONS

4.1. Approximation of Autocorrelation Functions of Air Temperature
and Density and of Wind With Analytic Expressions

In Chapter Three it was shown that autocorrslation functions
of air temperature\in specific atmospheric layers, latitudinal
groupe and half-years exhibit similarity, which makes it possible i
to combine them into four groups with given features. Autocorrela-
tion funetlons of air density also can be divided into three homo-
geneous groups. First we consider Jointly the autocorrelation
functions of alr temperature and density, we note ahigh similarity
of' the tropospheric and stratospheric autocorrelation functions of
these meteorological elements. Therefore the autocorrelation func-
tions ©f ailr temperature and density can be combined into four
groups.

Group I includes autocorrslation functions of temperature with
initial correlation levels at 3, &, and 9 km, and air density with
initial correlation levels of 3 and & km, related to the middle
latitudes. They have the shape of a damped cosine.

Group II includes autocorrelation functions of air temperature
and dengity for the high latitudes with initial correlation levels
at 3 and © km. They have the same pattern as the functions in
group I, but differ from the latter by [their smaller amplitude.

Group III consists of autocorrelation functions of temperature
for the middle latitudes with initial correlation levels at 20 km
and higher in the cold half-year, and also 15 and 20 km in the warm
half-year.

Group IV includes autocorrelation functiong of temperature
that have initial correlation levels higher than 20 km in the warm
half-year in the middle latitudes, and higher than 6 km in the
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warm and cold half-year 1in the high latitudes, as well as autocor-
relation functions of air density with initial correlation levels
higher than € km in both latitudinal zones in the cold and warm
half-years.

Fach of these groups of homogeneous curves can be approxi-
mated with a single analytic expression. Obviously, the curve
groups I and II are convenlently approximated with the expression /102

r(AH) = e "eos QAH, 1 (4.1)

and curvé groups III and IV -- by the equality

FAH) = ¢~ "1, | (h.2)

Table'%.l gives the values of k andS?O ohtained by the method
of' least squares. The different values of the coefficients corres-
pond to the different groups of functions.

TABLE 4.1, VALUES OF k TABLE 4.2. ROOT MEAN SQUARE
AND FOR AUTOCORRELA- ERRORS OF APPROXIMATICONS OF
TION FUNCTIONS OF AIR AUTOCORRELATION FUNCTIONS
TEMPERATURE AND DENSITY :
_ B R
| = - - oo N ™
Coefei- j|-Group of functions, ! Group | | kn_
e o L [ P e e wlw
p ket . |0.040|0,094]0,157 | 0.0975 10,05 0.080,08/0,09% 0.10
RN T e Rl R < | o0 | 007 oifo| o2
g kmTf ol o2t — ) - .04 | 0,07 |0.1110.31 0,
| ’ ! -

The results of approximations|of the functions in groups I
and II are plotted with a dashed line in Figs. 3.15 a and 3.16 b.

Table 4.2 gives the root mean square errors of the approxima-
tions for functions in group III and IV.

: The root mean square errors of the appr9ximatien have dxnﬂ;khe
. same valuel as the confidence intervals | of the autocorrelation functions,
which indicates good agreement between the analytic and empirical

functions.

Analysis of the autocorrelation functions of wind velocity
component ghows that thelr entire set can be divided into four
groups of homogeneous functions.

Group I includes autocorrelation functions of the meridional

wind veloecity components for the warm and cold half-years in the
middle latitudes, and for the warm half-year in the high latitudes,
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and the zonal component of wind velocity for the cold half-yesar
in the middle latitudes, which have initial correlation levels at
altitudes 5-20 km.

Group II concludes autocorralation functions of the meridional
component of wind velocity with initial correlation levels higher
than 20 km for the warm half-year in the middle and high latitudes.

Group III includes all autocorrelation functions of the meri-
diornal and zonal component of wind veloclty in the cold half-year
in the high latitudes, as well as the meridional component of wind
veloclty in the cold half-year in the middle latitudes [with initial
correlation levels higher than 20 km,

Group IV consilsts of autocorrelation functions of the zonal
component of the wind veloelty for the warm half-year in the middle
and high latitudes, as well as for the cold half-year in the high
latitudes above 20 km.

It is’ladvantageous to approximate the functions in Group I
with expression (4.1), and those in groups II, III, and IV -- with
expression (4.2). Table 4.3 presents the coefficients in the
exponents for these groups of functions obtained by the method of
least sguares.

TABLE L.3. COEFFICIENTS OF EXPO-

NENTS IN THE AUTOCORRELATION

FUNCTIONS OF WIND VELOCITY COM-
PONENTS {(Qy = 0.08 km~

Group of I II I1T Iv
functions ‘

k, km™1  0.100 0.190 0.055 0.0275

The precislon of the analytic determination of these functions
can be Jjudged from the values of the root mean square errors of
the approximation. They are given in Table 4.4 for the four groups
of autocorrelation functions of wind velocity components.

The root mean square errors given in Table 4.4 havé approxi-
mately the same value as the confidence infervals of the autocor-
relations cof wind velocity components.

In skveral cases, not only is the analytic form of the correlsa-
tion functions of the physical parameters of the atmosphere of
interest, but also the covariance)functiong of these parameters.

The direct approximation in most cases 1s extremely difficult,
since the correlastion functions of the physical parameters of the
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TABLE 4.4. GROUP MEAN SQUARE ERRORS
OF THE APPROXIMATION JOF AUTOCORRE-
LATION FUNCTIONS OF WIND VELOCITY

COMPONENTS
R Al knﬂ
F .
: aﬁg j_-gni 5 | w0 15 n | 5| o0 | w
I 0.0910.10 10,08 [ 0.05 | 0,06 | 0.07 | 0,05
It 0,06 0,04 1 0,03]0.0250.06!0.08] 0,09
il 0.05]0.08] 0,09 0.08;0,07}0.,07 | 0,06
IV }0.08 | 0.09 | 0.09 0.11‘ 0.09 0,08

0,09

atmosphere (excluding air temperature) very usually by 3-5 orders

of Increase in altitude intervals. However, these covariance [func-
tions could be described with analytic expressions if we are able

to find these expressions for the root mean square deviations of

the corresponding atmospheric parameters. The root mean sqguare
deviations of air temperature and wind velocitiy components change- 5104
very complexly with altitude, which hampers their approximation, '
though in principle 1t is possible, for example, by using the
exponential orthonormalized functions examined below. The analytic
expression of the root mean square deviation can be readily derived

Tor air denaity. Actually, let us consider the function

% )

(4.3}

£ () = 5

in which o¢_ is the [root mean square deviation of air density at
the group 19vel, and op (H) is its value at the altitude H if we
conaider the values of the function {,(H) for these groups of lati-
tudes and half-years, it turns out that its variation with altitude
is described approximately by the exponential (Fig. 4.1)

. _—-ﬁp.lsu
[(H)=e i (4.4)
Therefore,

_ — O.I5H
Gp (H) - UPee i .

} (4.5)

When determining this expression 1t was assumed that %ﬁéﬁofg/ﬁB,
which corresponds to the mean of the root mean square deviation of
air density at ground level.
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Eq. (4.5) smoothes /105

over several details of
the altitude distribu-
y tion of the rooi mean
| - _ square deviations of air
‘ ‘ density in different lati-
tudes and half-years, but
closely describes the
general trend of their
variation with altitude.

Let us dwell on one
feature of the fields of
pPhysical parameters of
the atmosphere that
Pollows from the proper-
tles of autocorrelation
; functions of air temper-
A ature and density and
the wind velocity compo-
nents. Obviously, these
atmospheric parameters
are nongtationary random
functions of altitude.
Let us consider the
/ normailzed function

i t 3 a4 |
10 20 Jo 40 50 sgH km

Fig. 4.1. Approximation of root mean
sguare deviations of alr density

fary
?(H)='f?(“g3- (4.6)

4]
in which £(H) are centered functions denoting either temperature

or density of air, or else wind velocity compcnent, and a (H) is
the root mean sguare deviation. £

Let us find the mathematical expectation, the covariance |func-
tion, and the dispersion of this random function. It is obvious
that

Mg ()] =0, R'?(AH)xrg(AH), D?(H);r,‘l (4.7)

Above 1t was shown that in each half-yesr in the middle and
high latitudes this atmospherlc layer can be divided into two layers,
the first of which is the troposphere (the lower 20-km atmospheric
layer 1s the first layer for the wind velocity components )} in which
the correlation functiong of air temperature and density and wind
veloclty components, being covariance jfunctions of the random func-
ticns ¢(H) are identical in form, that 1s, their values are

determined only by the altitude interval AH, Referring to EQs}l __\]'/

' ‘4_,'..':".' b



(4.7), we can conclude that within these atmospheric layers the
random functions ¢(H) can be considered as stationary, while the
obvicus equality.

HH) =m(H) +a (H) g (H) [ (4.8)

means that these nonstationary random functicns (air temperature
and density and wind velocity com onents) can be expressed in
terms of nonrandom functions me (H) and of (H) and by th¢ stationary
random function ¢(H). The meridional and zonal wind velocity
components in the cold half-~year in the middle and high latitudes
have the characteristic indicated shove throughout |the atmospheric
layer extending from ground level to the altitude 70 km.

It must be noted that the approximation of the correlation
function of the stationary random function by expression (4.2)
invelves one unpleasant feature, which is that the function (4.2)
does not have a derivative at the point AH = 0. However, this
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limitation dis not essentﬂal for our purposes, since the small scaleg

of . the . fluctuations . in the physical parameters of the atmo-
sphere are not considered 1n the applicaticons of this monograph.

In saveral practical applications it proves to be convenient
to represent the autocorrelation functions of physical parameters
of the atmosphere especially 1if they differ from the exponentldl
with a Fouriler series in which the exponential- orthonormalized’
Tunctions are the basis functiong.

The system of functions i (X); jh(xk e %JXL‘

integrable on fa, b/ is orlthogonal if the scalar product of these
funictions satisfies the condition

p 0 when i # k
(ys, Yk)“—‘,f)’:(x)yk(x)dx:’ (4.9)
a 1 j>0‘ when 1 = k
The system of orthonormalized functions /
where Pal); o (x)s 5 b, (),
,‘ _ nlx)
IJ‘(,?C) = ”i)'tﬂ ' (4. 10)
and / : b 'fa
1y:fl = (e y)™ = (j ¥ (x) dx)
| “ (4.11)
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is the norm of the function yi(x) can be brought infto the correa-
pondents with the system of functiocns.

The system of functions ¢E(x) has the following propsrty:

0 when 1 # k
(L.12)

>
b be) = ¢(x}p(x)dx=={
(@0 ; i ‘-k, , 1 when 1 = k
The function f(x) integrable on /a, b/ can be expanded in the
Fourier series

= Elak%(")’J (4.13)

in which a,, are constants, and ¢k(x) are basis functions of the
orthonorma%lzed ‘aystem.

The coefficients are usually expressed in terms of f(x).
Actually, let us multiply both sides of equality (4. 13) by ¢, (x)
and let us integrate the resulting product in the limits from a
to b

b o b

Jf(xJ"e,. () dx = 3 @ [ 9, (x) 3, (x) dx. (4.1k4)

By virtue of equality (4.12), all the integrals of the right
side of Eg. (4.14) when k % n tend to zero. Therefore,

b

freon s —a, 5 % (x)dx =a,.

[t

(4.15)

S

Equality (4.15) allows us to compute the coefficient of the
Fourier series if we know the systemdof orthonormalized functions.

Suppose we have two vectors:
X X Xay ...y Xp,
Yo oys 9 o ¥
Let us denote the smallest subspace X by Sy. The vectors

X and ¥ will be equivalent 1f for all p
S, _Syp_

P

Tet us orthogonalize these 'vectors, that is, let us replace the
vector ¥ with some equivalent orthogonal vector. The orthogoniza-
tion process amounts to the following.

If' we project orthogonally Xp onto subspace Sp-1, we get
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where

Lpspon S, ax,y LS, (p=12, )
Let us set
yp=;\pxp,\' (p'—"' 1’2’ ""xl.\’le)’ (4‘16)

- ! + .
where Ap arearbimﬁmyj.nomzero quantities.

Then vector ¥ will be equivalent and orthogonal to vector X,
However, we know /12/ that

X

G :
'x —
(xp,xl) (xp, I,,ml) xf: 1
. ":ﬁs\": [¢] (p=1121"'0 Gu“‘)s ] (‘J—;‘.:L?)

p—1

where G = the Gram determinant.

’ Setting A = G,_ 1 in equality (4.16) and referring to equality /108
(4.17), for the elements of the orthogonal vector we will have the
following formulas:

(1, xy) X,
W=Xn = HE
(X2, X1) X2
‘ (21, %) - (3 %, X,
yﬁ Ll I » ),.l. 18
(i) - (e Ry )%, (4.18)

in which as before the parentheses denote the scalar products of
the functions appearing in them.

Now let us find the elemants of the orthonormalized detector
¢ (x) corresponding to vector Y. To do this, let us determine
the scalar product (yp, yp). If we use Eq. (4.16), we get

(-vp’ yﬂj - Gf’"*l (xpN' xpN]'
It is known /12/ that o

(xﬂl'\'f’ Koy ) = G

p—1 (4.19)
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Therefore, -
'f (yﬂ" yp) = GpGp—l'J

Thus, the desired elements of the orthonormalized vector
are defermined by the eguality

i — yP

_:jf-TE;EjE?- (4.20)

Eq. (4.20) uniquely determines the orthoncrmalized system of vectors
specified by Eg. (4.10).

To construct the orthonormalized system of exponential func-
tions, let us gssume that the vector X is given by the system

X(hy e e . e (c>0) | (4.21)
and let us find the system of functions ¢ (h) corresponding to it.
Suppose the scalar produect of functions Zp with weight g(x) = 1
is determined at 10, e |, Then

VDG (4]

Vem®*dn fean ... (e ?*dhe "

i a

s p P o 20
‘ o rin ”'d!r 5 e Winer gy _' 5(5 {p—h ""dl.r e~nh
) & §

or, alter computing the integrals in the determining determinant, /109

1 1 1_ —ch
P 3 o €
ye=| L Y 1 te-ver . (i, 22)
’ pe (p+1)c¢ Zp—2)c € _
1 1 , 1 —peh

G GFDHe T @—ne

In this case, Gp.] 1s the algebraic complement of the element
standing at the intersectlon of the (p+l)h rowfand column., Cbvi-
ouslys o . -

T |
G, =| %0 T "
T (4:23)
and p P c (p—MNe
L 1 Ly ol
6= | Tl (4.24)
(p+Dec (p+Dec " @2p—T)c




Computing the determinants (4.22) - (4.24), using Eq. (4.20)
we can obtaln a system of the specified number p of orthconormalized
functions which consist of specific combinations of exponential
Tunctions:

k ¢ I
-pk(fz)-:glﬁkﬁ“ "-_ ! (4.25)

Actually, when p = 1, Egs. (#.22) - (4.24) yield
ywim=e" G=1; G :J' e h =

(
Therefore,

Y (k) = VIce ™, (4

We similarly obtain, when p = 2,

M‘EIT et 710‘ le?
ye (h) = - MTEEE G- =
and | - _ ~‘- ‘ | 11;9
(k) =V (6e*" 4e_“E| (4.27)

Simliar computations yleld

Doy

pa(ﬁ)==leE[loé-“”.Lnéelﬁﬁqféé‘”); ‘ (#.28)

(k) =1 Tz (_’,Oe_qch — 120" +- 60e~2¢" _ 8&"”‘); (4.29 )
¥ () = V10 (1266 .. 2800~%" 4. 210g~3" _

— 6067 4. 5o, (4.30)

These formulas coincide with the expressions obtained by another
approach by D. Kn. Lening and R. G. Batten /32/.

Computing determinants of higher orders involves certain dif-
ficulties. Therefore let us examine another method of obtaining
the orthonormalized system of exponential functions.

Let us set up the linear combination
AI?T_T_--AQ'{;;Z +—' Tt + Aln—lq)n—l + An"Pn*
in which coeffliclents A, are gilven by ﬁh@ formulsg :

(4.31)
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and let|us determine the difference

. ) n—1 B .
Ky=Ag,— 3 A,qa,;‘ - (4.32)

. Obviously, K, is a polynomial .of nth degree with respect to |
e Cn,

In turn, iy ran be represented as

'P,.=Q,,e”"7”'+N,._:J (4.33)

where Nn_-1 18 a polynomial of the (n-1)-th degree in e~Ch  Thepe_
fore we have

n—1
Kn = AuQne_ et + AnNn-—l - gl Al"P!‘ l ( L{- : 34 )

T

Since A,Q, = 1, Eg. (4.34) becomes

3
e a=nch .
Lo=e™" - 3 Ay,
where
Lw;:R;HnAnAQ;

1

for, if we consider eguality (4.31),

. a1 oo )
L= M= N G (h) [ htme™™ i (n=1,2,...).
fe=] Iy

(4.35)

Comparing polynomial L,(h) and y,(h) shows that they differ from /111
each other by;a cofactor that depends on n. From this it follows

that

Ly (R)

rr"—"“J— (h.36)

| L2 (nyan
b

"pu (h') =

Egs. (4.35) and (4.36) are a set of recursion formulas enabling
us to easlily calculate the seguence of orthonormalized exponential
functions of any degree.

The sequence of coefficients By, can also be found by another
method proposed by A. 3. Galkin and E. A. Mayboroda. It consists
of the following. If we use Egs. (4.12) and (L4.25), we get the
relation



m

v E1| — sch d — ich : " Bkami
5(23‘*3 )(23 e~ )4,‘::2 ¥ e =

=1 f—-l
1 when k¥ = m,

(4.37)
O when k # m.

Eq. (4.37) enables us to write out the system of aliebraic
equations to determine the coefficients of Eg. (4. 25). In general,
when there is a large number of termg in the seriecs (4 25) the
system of equations is complex. However, if we analyze the sequence
of equation " (4.34) we can note that the coefficient By, are defined
by the expression

Bo= (- 0"V ER T f (4.38)

Here the norm of function (4.35) is

. RUGR—1)1
25l = Pkac(Qk——l)[_ﬂJ

When computing the coefficients Bkv by this method, we can
use the following recursion relations:

5 . VYI&ELI(k

[EE N (k—v+ 1 YIR & {(4.39)
(5 4 ) (R —)

Bk.v+1='"—7Tf_IT)_mB

Obtaining the system of orthonormalized function (4.25) we
can approximate the function f(h) with the series

Sy =% S (), (4.40)

i == l

in which - /112
| » = F(0) 0, (k) di,
]

and the Integral quadratic error of the approximation is

o0 ) N a
= [f(fr) -3 S,,r;»,,(iz)] dh

o

(b.a1)

or after geveral transformations

N-
Amjf (mdh— X s,

n::[
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WMM1ﬁapproximating the functions f(h) with orthogonal expo-
nential polynomials, owing to the rinite number of the polynomials
the problem of selecting the value of parameter c¢ crops up. One
of the approaches to the solution of ¢ has been proposed in /32/;
accordingly, the following seqguence in selecting the coefficients
¢ is recommended:

subtract, i1f necessary, from function f(h) a ¢onstant so0 that
the resulting function Af(hj - 0 as h —e; and

gelect the appropriate value of ¢ g0 that the funection e'Ch
tends to zeroc at approximately the same rate/as the function Af(h).

However, this selection of the valus of the coefficient ¢
cannct be regarded as rigorous since the number of fterms 1in the
approximating series depend not only on the specified precision of
the approximation, but also on the value of A(c

To obtain the value of ¢ corresponding to A{c¢) = min, it is
convenlient to use numerical methoda. 1In particular, we can use
methods whose description is given in /7F/. It is also to use the
following iterative approach. Let us expand the function g(c) in
a Taylor series in the parameter ¢ in the neighborhood of some
gelected initial value of CO bounded by the gquadratic approximation

A(")“‘-’-“(%)‘F (Co)(c cn]+ 2 dcz (Co)(ﬂ'—cu)? (L. 42)
The minimum value of Eq. (4.42) is obtained when
% (e) + 25 (o) (e~ ) = Oj
Hence the revised value of gwé ¢y is )
22
fr= 6™ 7 (4.43)

—— (r'(l]

(j ?

Further, in Eqs. (4.42) and (4.43), instead of cg we substitute/113

cy and we obtain c, even closer to the optimal vaiue. The sequence
Cos ©1s Cos - tends to ¢, where Ac = min.

Extensﬁqn 4.40), after the reduction of similar terms, is
transformed to become

. |
Fy=¥ we ", (4.44)

=1
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Fig. 4.2. Values of the integrand in Egq. (4.1%)

Now let us assume that f(h) = PE(AH) and let us find the
expansions of the autocorrelation fuictions of ailr temperature and
densgity that refer to the first two groups of functions, that is,
to groups differing from the exponential. Calculations show that
a’fairly close approximation is attained for these functions if
we use only the five terms of series (4.44), To do this, ag indi-
cated above, it is sufficilent to determine five values of the
coefficients by Eg. (4.15). As applied to group II of the normalized
autocorrelation functions of air temperature and density, the values
of the integrands of Eq. (4.15) are given in Fig. 4.2,
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Af'ter computing the coefficients of the Fourler series, S_,
and reducing related terms, we get autocorrelation functions o
alr temperature and !density in the form

r(AH) = E wue'”c".j (4.45)

n=l

The valuegs of coefficients W, and ¢ are giliven in Table 4.5.

TABLE 4.5. VALUES OF THE COEFFICIENTS w, AND

¢ OF THE| EXPANSION OF THFE AUTOCORRELATION

FUNCTIONS OF TEWPERATURE AND DENSITY IN A
FOURIER SERIES

Group _of] wy  for ]
functions | | ¢ '

[ | W 2 l =3 ‘ WA n—=5

168,060 | —74,280
— 60,358 19,746

—121, 10t
§2,092

- I 0,040 | —1,820.| 30,160
i 0,094 1,601 | —22,146

As follows from equality (4.45), when AH = O, we have

r (AH = 0) = 2 @, =1. ]
=1

Summing up the coefficients in Table 4.5 gives the values of
rg(&H = 0) very close to unity.

4.2, Noncanonicsl Expansions of Temperaturs and Air Dengity and

Wind Velocity Components

When solving several problems of analyzing and synthesizing
automatic control systems, a noncanonical expanslon of some sta-
ticnary random function g(h refers to an expan@ion of the form

L1/

(h) = m, (h) + 1 cos Q%A 4 B stn ©*h, (4.46)

in which ~Yaﬂd B are Independent, normally distributed random

variables, and * is a random frequency that has some distribution

with probapility density p(Q). Random variables 7y-and p have the

following property:
Ms]=M[8]=0; M[8]=0; | |
A/IITEIEMIBd,IuD},:Dﬂl:D‘ } (‘LI'.LI'?)
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Normalized centered functions ¢E(h), where &{(h) denotes air
temperature and density and wind velocity componentgs, as shown /115
in Section 4;1,]can be approximately assumed to be stationary
randomlfunctions {(we can judge the precision of this approximation
from the ratio between the root mean square error of the appro-
ximation of the covariance functions of each of the groups of
these functions by an analytic expresglon and by the confidence
intervals of the covariance functicons). Accordingly, let us
examine noncanonical expansions of alr temperature and density
and wind velocity components

o, () = ") 1 o8 QU + 8, 51 €, (4, 48)
‘Pp(ﬁ)zﬂh—lg—-ﬁg-"yﬂz7P00593ﬁ+ﬁpsin9;k, (4.49)

o, ()= 2O RelD o cos @k 45, 52, (4.50)

., r,nv(h)-_—i%lﬂ=Tvc059;h+[3ﬂsin9;h. (4.51)

As dindicated above, random variables ¥ and @ are distributed
according to the normal law, that is,

i
i

1

() = e e (4.52)
f B
pE) = V%?D' e (%.53)

Now let us find the distribution of random variables Q¥*, To
do this, let us use the equality

R,(8h) = M [g (k) 3 (h+ AR)] ='r, (AR), i (4.54)

which 1s one of the sets of equalities (4.7). Let us substitute
into Eq. (4.54) instead of ¢(h),|their values from Egs. (L.48) -
(4.51).] Then referring to Egs. (4.47), we get

r, (8K) = DM (cos Q;Afﬂ

Since D = 1 (this is evident if in the ‘fight—kEnd"é'xp_res'sion we set |
Ah = 0), then ‘ o T
. re(8h) = M (cos 2iAh)
or
ro(Ak) = 5 P(2) cos 284 dQ.

—_—ng

(%.55)

The inverse transformation for Eq. (4.55) is of the form

p(L) = .-L g ro (Af) cos uAim(Afzq (4,56)
I" PR

e
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In Section 4.1 it was shown that autocorrelation functions
of air temperature and density have the form of the exponential

‘(4.2) for stratospheric functions, and the form of a damping

- ¢cosine (4.1) ibr tropospheric functions, and that the autocorrela-

100

tion functicns of wind veloecity components are determined by
Eg. (4.2). Substituting Egs. (4.1) ana (4.2) into Eq. {(4.56) and
integrating it, we get a distribution of the form

k
P(9)=';ﬁ§;1§rJ (4.57)
For random variables Q¥ of noncanonical expansions of air ftempera-
ture and density in the stratosphere and mesosphere, and of wind
velocity components, as well as the distribution

p(@) =t [k L

| Fresy t Freyer ) (4.58)

réferring to alr temperature and density in the troposphere. The
classification of Egs (4.57) and (4.58) in a particular physical
parameter of the atmosphere, half-year, and latitude is determined
by thewvalues of the coefficients k and £ .

Distributions {(4.57) - (4.58) can be expressed in terms of
a normal distribution. To do this, lef us ¢Xamine the two-para-
meter distribution . e

i [ ey _(n+1zo)“]

in which we denote _
N— Mo =%y, T+ M=%

Then distributicn (4.58) reduces to the distribution

——

2
*3

_‘2
1| -L£ -2 .
P("’J)=P(*1,*2):§_;(€ P e 2)=p(9) (460)
E
given the condition that

B2 (2 — Q) \'a

xw=(2hr————:?i7) (4.61)
=

and

_ B2 g (S LY VM
xg_(gm*w—:_tz_,;.) : (4.62)

7

n
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Actually, if we substitute Egs. (4.61) and (4.62) into distri- /117
buticn (4. R9¥ we will have

VT (VL
_ emitﬁTi_Ej+g"»+(-kn* -

Y 2=

1 A . =
“l/-‘.l?: ( / "_ k-f“(”"""“ +V‘ k2+('&+“n)n)_

pn) =

& 1 '1 1

= (4]
=T{ﬂ+m—awj—ﬂ+w+ﬁﬁ]prL

In the particular case when in Eq.(4.59) 75 = 0, we have

the distribution
p(n):]/ge"?=p({‘ (4.63)

to which the distribution (4.57) reduces ifl

- g s s

Distributions E&.60§ and (4.63) are more convenient compared
with distributions (4.57 (4. 58) when we use, for examples, the
interpolational methed of analyzing automatic control systems,
which will be examined below, gince in fthis case the distributions
of all random variables of the noncanconical expansion of atmo-
spheric perturbations are of the same form.

The distributions of freguencies of fluctuations in air tem-
perature and density and in wind velocity components, determined
by Bas. (4.57) and (4.58), are expressed in Figs. (4.3) and (4.4).
The numbers alongside the curves correspond to specific groups of
autocerrelational functions of the,,physical parameters of the atmo-
gaphere, that is, they indilcate the particular layer of the atmosphere
each latitudinal group, and each half-year to which each function
belongs (ses Section 4.1). The laws of the distribution of frequency
make it possible to determine which scales of fluctuations in air
temperature and denslty, zonal and meridional wind velocity compo-
nents prevail in specific atmospheric layers (we have in mind the
fluctuations of the meso-scale). To do this, we must compute the
probability P that freqguencies of atmospheric perturbations §§ will
fall in a specified interval of freqguencies

(4.§5)
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Fig. 4.4, Distribution of fre-
quencies of perturbaticns of
wind velocity components

Fig. 4.3. Distribution of fre-
guencies of perturbations of
alr density

Computing the probability P by means of Eg. (4.6%) reduces /119
to substituting in it Eqs. (4.57) and (4.58) and then integrating
in the specified frequency interval. The integration gives,

regpectively,

, (4.66)

(4.67)

, - i
% arctg & L”"} }

Y1

0
<%=Th@ -

The results of computing the probabilitiss of the frequencies of
fluctuations in air density are given in Table 4.6.

TABLE 4.6. PROBABILITIES OF FREQUENCTIES
_OF FLUCTUATIONS IN AIR DENSITY

) 1. =1
‘ . Lati-, 21 -{% km !
Layer, tud ¥, :
kn ude 01 U,l—ﬂ,‘..‘l 0.2 0,3 0,3w0,4| 0,4-0,3] 0,50,
Middle :
10-60 | & highl] 0.57 | 0,13 | 0,09 | 0,05 | 0.03 | 0,03
o—60 § Middled 0,07 | 0,32 | 0,44 { 0,08 | 0,03 | 0,01 tol
0—6)  High {0113 |0.25 | 0,29 | 0.12 | 0,06 | 0,03
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From Table 4.6 it follows that in the stratosphere and meso-
sphere (10-60 km layer) in the middle and high latitudes in the
warm and cold half'-years, the highest probability is noted for the
smallest (less than 0.1 km'l) frequencies of fluctuations in air
density. The probability of.nigher frequencies (smaller wavelength)
drops off sharply. For example, the frequency intervals O.5—Q.6 km~™
(wavelength 12.5-10.5 km) has the probability 0.03. If we examine,
in addition to the stratosphere and mesosphere, also the troposphere,
the maximum probability shif'ts toward the side of higher frequencies.
In the middle latitudes, for example, the highest probability falls
in the 0.2-0.3 xm~1 interval (wavelength 31-21 km). The same ghift
in prcobabilities along the frequency,Speptrum,is observed alsol in
the high latitudes, although it proves to be more elongated there.

Table 4.7 contains the probabilities of the frequencies of
fluctuations in the zonal and meridional wind veloclty components
(see Section 4.1 for the symbols of the groups of functions).

As follows from Table 4.7, for the zonal wind velocity com-
ponents in the warm half-year in the middle and high latitudes
and in the warm half-year in the high latitudes (IV), freguenciles
legs than 0.1 xm~1 are prevalent, absolutely. The greatest proba-
bility, although still somewhat smaller in value, occurs at the
same freguency also for the meridional and zonal wind velocity
components in the cold half-year in the high latitudes (III).
A more uniform shift of probabilities along the frequéﬁcy spectrum
occurs for| the meridional component in the cold half-year in the
middle latitudes (I) and in the warm half-year in the high lati-

tudes {II}.
|

TABLE 4.7. PROBARILITIES OF FREQUENCIES /120
OF FLUCTUATIONS IN ZONAL AND MERIDIONAL
WIND VELOCITY COMPONENTS

_* Group of | 2o knTY )

. functions—J 0,1

‘0_,l—0,2 { 0.2—-03 l 0,3—0.4 [ 0,4-0,5 | 0,5--0,6

1 0,40 0,27 0.1 0,006 0,03 0,02
1 0,31 0,20 | 0,13 0,08 0,06 | 0,04
I 0,68 0,15 0,06 ) 0,03 | 0,02 0,01
v 0,83 0,09 0,03 0,02 0,01 0,01

4.3, Canonical Expangions of Air Temperature and Dengity and of
Wind Velocity Components

In several cases 1t 1s convenient to represent the random func-
ticon as a certain linear combination of uncorrelated random variables.
This combiration contains Inonrandom functions and is of the follow-'
ing form:
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< E(E) =m, () + E fovxv(t).J_ (4.68)

—— =1
In Eg. (4.68) we have designated: §V(t) are nonrandom functions,
called coordinate functions, and v, are uncorrelated random
variahles such that - A4ﬁ71=0

.j_w[rv"”alt] :{%L"Ea-f’l"#p (469)&[\

Ory=gp.

_ The representation of a random function in the form (4.68)
is customarily called the!canonical expansion of the random furnc-
tion. In the general case, the canocnical expansion.of a random
function is an infinite series. When practical use is made of
canonical expansions, ordinarily a limited number of terms in

the series (4.68) are employed.

If we denote a centered canonical function byi}iﬂJ then
obviously the covariance function of the random variable £(%)

is . - . _
R. (4, t’)=M[E(:)§(f’)]§' (L.70)
Referring to Eq. (1.68), we can rewrite Eg. (4.70) in the /121
form -

R )= M [3 N %'.,ff'i..xv(f)x“(f’)]-

= lu=l

El

In the last equality we used the property of the interchange-
ability of the mathematical expectation, and also the property or
random coefficients of the canonical expansion of random function
(4.69). We will have

Rt ) = 3 Dx (£) x,(¢). [ (4.71)

3

Eq. (4.71) is the canonical expansion of the covariance functions
of the random function £(t). The equality

Dty =R.(t. 1) = 3D, [x, (O] k (4.72)

is i1fts particular case when t = t'!', where Dg(t) 1s the dispersion
of the random function &£(t).

To determine the coordinate functions of the canoniecal expan-
sion of the random function, let us find the mathematical expecta-
tion of the product /& |
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o)~ Tupas . | (.73)

v ) f

Based on Egs. (4.69), all the terms in the right-hand side
ol Eq. (4.73) are equal to zeroc, with the exception of the term
for which wv= g, Thus,

: ﬁfg ! = £,
which yields [ ( Wu] WX, (6)
x[‘.(t) '_D]IL'M[E(t)rU‘L], (ILI.-TJ_‘L)

In order to determine the random coefficients of the canonical
expanglong of the random function, let us represent them in the
form of aglinear combination of values of these centered randon
function &£(t)

dyr 0

a:v | V
o (‘”’J (4.75)

in which a,, are arbitrary coefficients.

The random ccoefficients v, can be found if we know from the
values of a,;. The coefficients aka are not difficult to determine
i

oy uging the following obvious equality:
M = Ya_,a R (t, 1)
['vvﬂp._-l fﬂavhapl}?;( h? l) (4'76)
When v# 1, as follows from Eq. (4.69), the left-hand side of /122
Eq. (4.76) is equal to zero, that is,
;‘?; avha’leE (t!.'.’ tl) - ﬂ (}4 . 77 )

The coefficients a,, that satisfiles the conditions (4.77) can
be selected, and by using an infinite set of methods, since the
number of Egs. (4.77) is always smaller than the number of coeffi-
cients. For example, first we can determine the random variable {
vy by arbitrarily specifying the coefficients 81ps and then we can
find the coefficients aopy 80 that the random variable v, will not
be correlated with vq. %urther, we can determine all t%e remaining
coefficients a such that the random value v, is not correlated
with the variaBTes Vi, Vps +.vv5 Vp_q. Thus, all the coefficients
a can be specified arbitrarily, eXxcept for the coefficient a(n~1)n-
For example, we can specifly

a =l;am==0iwhen h > (4.78)

"
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Then the remainin coefflclents a (for h<2ﬁ) will be computed
by means of Egs. %4 Consequenhtly, referring to Egs. (4.78),
Eq. (4.75) will beeome

Setting v=ﬂh\1n Eg. {4.76), we can determine the diépersion
Dy. It will be expressed by the equality

DV=M[v“‘ Z%ﬂﬁ (1), \ (.80)

1]

If, moreover, in Eqg. (4 74) we substltute the expressgion

(4.75), we will have
. o
xv(t)— S'a R (s thj (4.81)

Now, to determine all the elements of the canonical expansion
of the random function, let us write out first §Eqs. (4.79) and
let ug compute the values of the disper81on and of the coordinate
Tfunction forv = 1. We get

o = E(4,); 1),-_-RE(¢J,?)] and %)= g Ry (1, 1), (4.82)

and let ug determine the variables Vv from the recursion formulas /1273

deriving from (4.79) ,

In order to find the coefficients Cyps 1€t us set € = ty in
(4.68) and let us compare the resulting expression with Hg. (4.83).
We will have

C'm::.—_ { -921-.2,...,V—]
b=ty (P2 ) \ (4.84)
and, moreover, (
. - - = B - - :-‘ ST i
x(t)=1 (=120, \ (4.85)
and also j@@ﬂ
X, (¢ qur!{}v_ " (4.86)
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Based on Egs. (2.84), Eg. (4.83) can be written 1in the form

o '\ir—l e
o =)~ Foentt) 05230

ﬂ=1

(4.87)

From Eq. (4.87) there derives an equation for determining
the dispersions

v — I

D.=Refé, )~ 3, Oy [ (L))" (=2.3..). (%.85)

=1

Now it remains to write out 1in its final form the equation
for determining the coordinate functlong. For thils purpose, let
us substitute Eg. (4.87) into Eg. (4.74). With reference to
Eq. (4.69), we get

v -1

X () = p— [Rg — X Dyxy t)xf()](*‘:?’&---l. (1.89)

==l

Eqs. (4.87) - (4.88), janed) with the first equéllty from
(4.82), constitute a system of formulas thatlenables us to deter-

mine successgively all the elements of the noanhonlcal expan31onf‘

of the random function £&(%

If as before we consider the normalized centered functions
of the physical paramefters of the atmosphere

STy — m; (H)

c?g(H)"‘—‘-‘—WM,

(4.90)

the canonical expansion of the correlation functions of which are
of the form

v

ro(H, H'Y = 3 D, (1) x, (1, ) (4.91)

then the formulas for computing the sleménts of the canonical

expansion of these random functions will be of the following form:

w, = 9, (H,),

w, =y, (H,)— _V Hi(H) (v=2,3,...)

L 1
i=1

.i v—1

D=1~ 2 D}[xi ()%

Il=1

a . W= 1 ‘
£ (H) = ;;‘,—[ i1, 1) = 3 D5 )| | (92)

=1

107



201

| TABLE 4J8. ELEMENTS OF CANONICAL EXPANSION OF ATR TEMPERATURE, COLD HALF-
YEAR, MIDDLE LATITUDES

$p ()
$1000 020 | 915 | 020 | 00 02 | 05 | 08 | o2 | as | aw | o | oo | 02 wo | DYy
H ;
‘ 3i 6§ o 15 0 s | w0 s | w | 0 | = W | e

111 E0,.3530 —0,0670 |--0,7330 [~-0,3310 | 0,0190] 0,0730( 0.1530[-0,0810 |-0,0310 [—0,0810[ 00010| (,0310| 0,0200] 0,2000] 1,0000
21011 00167 1—0,2428 {—0,1452 [-0,0671] 0,0779|-0,0251} 0.0372 |-0,0572 ;0.1421 —;0.0175 -0,0011| 0,0148| 0,1294] 0,8754
30 ;0 I 02655 0,09141 0,0455 ‘—0.0083 —0,0084 [-0,0361 |-0.0143 [-0,0265] 00506 0.0122] 0,0112| 0,16120,9953
1loio 0 1 05583 0.7032] 0.6432| 05602 |—0,0831 |-0,0952| 0,0836| 0.3895| 0.6489| 0,3399| 0.3356/0,33680
5100 0 0 1 03494 0,1720| 10,1826} 0,0935 ~0.0201‘ —0,1401 1-0.2637 | 0,0705 |-0.0220|-0,0171]0,7583 -
61030 0 0 o | 01486 |-0.0035 0.041.3 0,0107 {—0,0468 |-0,1363 |-0,3296 (—0,1839 [ 0,0175]0,7339
7iui0 0 0 0 o 1 03888 | 02645 0,1581| 0,0562 |—0,0800 03315 |-0,1645 0;26]1 0,8108
5{070 0 0 0 ] 0 I 066121 04118] 0,2947| 0,1351| 0.0359 [-0.1607 | 0.4877:0,7221
51010 0 0 0 0 0 | 0 1 0,48131 0,4226] 0,36811 03451 0.2211}-0,1454|0,6083 |
W a 0 0 0 0 0 0 { 05197 03975 02740 0,1980| 0,2252)0,7088
il 9 0 ( 0 0 1] 0 0 0 0 1 0,5068 | 03447 0,2528| 0,1952)0,5908
21y }{) 0 ] 0 0 0 0 0 0 ] 1 04174 L3050 |-0188( 4,5150
JETNE gll 1} { 0 ¢ 0 1] 0 Q 0 0 1 091161 00,6267 0,4008
[EERTIEY) 0 0 0 H 0 i [V} 0 Rt 0 0 1 0,0754 04160

J
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TABLE 4.9. ELEMENTS OF CANONICAL EXPANSION OF AIR TEMPERATURE., COLD HALF-
YEAR, MIDDLE LATITUDES
¢ (H)
Coful e e | o8 | o8 | 05| a6 | a4 | 05 | os Ll @ @ | owy, | ooy
H Ym/
3 6 l 9 15 20 j 25 30 35 l 40 ] 45 | 50 55 €0 l i3

111 [ 06850 | 0,6410(-0,4390] 0.2050| 0,1400 | 0,0480( 0,0870 [~0,0400 |-0,0680 |-0,027 [-0,0100} 0,0300 | 00500| 1,800 {1,000
2{01 —0,6875 [-0,5021 [-0,1961 } 0,0737 [ 0,1151(—0,0482 |-0,0445 |-0,1534 {._0,0292 [-0,0248 | 00178 | Q.0108 | 0,3670] (,5308
3100 1 _0,1411| 00160 0,02660,0526/-0,0669 10,0018 [- 0,565 -0,1074 |-0,0202] 0,0425 | 00167 | 0,2985(0,8400
tiojo 0 ! 0,5042 |—-0,0483 | 0,1480] 0,1207 | 0,2338} 0,1743| 0,1751| 0,0899] 0,0723 | 0,0617| 2,1496}0,6045
stolo 0 0 1 0.3300 | 0,2125| 0,1302| 0.1564| 0.0272] 0,477 { 00316 0,0021 |-0.M71 |-0,7476]0,7387
6tnlao 0 0 0 1 066260 05419 0,3566| 0,2620| 0,1948| 0,0871] 0,0421 | 0,0051| 0,8635}0,8951
7{0]0 0 0 0 0 1 05068 | 0,1959| 0,1894] 0.1193| 0,0768] 0.0747 | 0,0404 |--0,2758| 0,5030
slolo 0 0 0 0 0 1 0,4567.|_ 04683 {. 0,3467{ 0,1865 | 0,0177 |—0,0157 [-0,0208| 0,5710
alofo 0 0 0 0o- (0 0 1 0,2057 | 0,2252[ 0,1694 | 0,0909 | 0,0950 |~0,1186|0,6864
0wlo|o 0 0 0 0 0 0 0 1 0,5086| 0,4141] 0,3603 | 0,1917| 0,3313 ,7096
1mioyo 0 0 0 0 0 0 0 0 i 0,3815| 02319 | 02581 0,0801]0,6221
12100 0 0 0 0 0 0 0 0 0 { 0,4456 [ 0,3406| 0,7683|0,7317
13100 0 0 0 0 0 0 0 0 0 0 1 0,4509 | 0,6134/0,7131
1i0lo0 0 0 0 0 Q 0 0 0 0 ¢ i ! 0,4509

0,690} J

i
i
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TABLE 4.10.

ELEMENTS "OF CANONICAL EXPANSION OF ZONAL COMPONENT OF WIND VELO-

" OITY. COLD-HALF-YEAR, MIDDLE LATITUDES
SuH

| 83 | e | o 815 | 010 | oa2 025 1 e 047 0,50 0,38 a.12 @ D%,

# km

' LR 0 s | w B | w 4 50 5 60

1 1 | Q,7600( 0,6700 | 0,4100 | 0,1500 0,0200| —0,0160 | —0,1200 | —0,0200| 0,0000 0,0400( 0,1000| 0,3500% 1,0000
2 0 |1 0,5701 | 14,2803 | 01562 0,1771 0,1660] 0,0265] 0,1071 0,1420) 0©,1648) 0,2225| 0,1340] 04924
3 0 0 1 ‘ 04035 | 0,0287 | —0,0146] ~0, 1494 ] —0,1595 | —0, 1507 | —0, 1068 —0,0640 | —0,0014 |—0,1086 | (,4138
+ 0 {0 0 1 0,4314 0,4014| 0,2056] 0,0996] 0,1380] 0,0836] 0,1298| 0,0861| 0,0141 60,7307
] o |0 0 0 1 0,7329| 0,5390| 0,3571 0,2217} 0,1752 0,0758] 0,0279 | 0,02390,8304
) 0 1a 0 U 0 1 0, 9444 1,07231  1,08007 1,0600| 11,1351 10400 0,0649 F,4999
7 o |0 0 0 0 0 1 052771 G,5517) 0.4536] 0,3603) 0,2803 0,1722 10,3309
8 0 |0 0 (] 0 0 1] 1 0,7232 10,5783 0,4225| 0,6111} 0,1912]0,9840 |
9 a (o 4 1) (] (} 0 4} | 1,0655] 0,9113] 0,6644 0,1384 0,189
10 0 (} 1] 0 U 1 i} ¥ 0 1 0,8002 1  0,8091] 0,1248]0,1043
oo fo e 0 0 0 0 0 0 0 1 0,8654 |-0,1131 {0, [068
12 U 1o 0 { 1] 0 Y] 0 U () 0 1 —0,1857 { 0,1410
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TABLE 4.11. ELEMENTS OF CANONICAL EXPANSIONS OF MERIDIONAL WIND VELOCITY
COMPONENTS. COLD HALF-YEAR, MIDDLE LATITUDES
Sy (H)
i 635 | 040 | 02 0I5 | o0 0,12 025 | oy 0,47 0,50 0,38 oAz oy | D'
H km~
5 | 10 ] 1 | o | = 30 v 10 s 50 55 80
! 1 10,72004 0,54001 0,2200| 0,0300 | —0,0050| 0,0200] 0,0600] 0.1700| 0.2100] 0©,1600]--0,0100 0,3500 | 1,0000
240 1 0,7292 01487 -0,0864| —0, 1329 | —0,0922 | —0, 0065 | —0,0257 | ~0,0025| 0,0030] 0,0149| 0,1580 | 0,4816
e qo |t 03290 | 0,001 |—0,1024| —0,1070| —0,2212| —0,1600] —0,2046 | —0,1527| 0.0224 |0,1043 | 0.4522
00 J0 0 1 02895\ 01410 0,1213{ 0,0339|--0,0130{—0,062 {—0,0214|—0,0585] 0,08190,8919
51 0 |o 0 0 1 0,5430f 0,4178( 0,2499| 0,1062] 0,0766] 0,0382| 0,1585{ 0,0805 |0,9207
6 -0 |0 0 0 0 1 0,6705| 0,5368( 0,4142| 0,3459| 0,2452] 0,0714] 0,083 |0,6950
oo je 0 0 0 L | o.6107| 0,407]| 0,215 0,2318]  0,2659| 0,16540,5040
10 |o 0 0 0 0 0 I 0,6441] 0,5223| 0,4634| 0,1511] 0,126810,5274
ol o o 0 0 0 0 0 0 1 0.7523| 0,5565| 0,5900 0,20390,5260
Wi o |0 0 0 o 0 0 0 0 1 0,6844| 0,6045] 0,1087|0,3624
| o o 0 0 0 0 o 0 0 0 ! 0,8159 |-0,0131| 0,4425
20 0 [0 0 0 0 0 0 0 0 0 0 1 0,1506 | 0,3093

J
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Above &(H) denoted p(H), t(H), u(H), and v(H).

In this case, to calculate the elements of the canonical
expansion of the air density, air temperature, and wind velocity
compchents, as follows from Egs. (4.92), it i1s not the covariance,
out the corresponding correlation matrices, and the actual cano-
nical expansgions of the listed atmospheric parameters that are
to be described by the equalities:

b (H) = mpui")+=p(H) ¥ wpfxpi(m;- (4.93)

LH) =m, (JH’)—\L 3 () 2 Wk (H); (4.94)
| =,

o (H) = my () + o, (1) N wara(H); | (4.95)

W(H) = my (H) 4 3, () S w05, (4.96)

I=1

As an ecxample, below we present the values of the slements
of the canonical expansions of air density and temperature, and
of wind velocity components, as well as the dispersions of the

random coefficients of the canonical expansions for the mid-latitude

c0ld half-year.

Tables 4.8 -~ 4.11 .contain the values of the centered normalized

functions of the physical parameters of the atmosphere, the random
coefficients of the canonical expansions, the dispersionsg of the

random coefflcients, as well as the matrices of the coordinate func-

tions. In accordance with Eqs. (4.85) and (4.86), the matrices of
the coordinate functions are triangular with unit elémeqts glong
the iprincipal diagonals. The first rows of these matrices are
equal, as follows from the last equality of the system (4.92), to
the first rows of the corresponding correlation matrices.

If we assume the stationary approximation of the funetions of
the physical parameters of fhe atmosphere ¢£(H), to describe the
atmospheric perturbations we can use the spectral canonical expan-
gions.

An expansion of the form /H9/

R (AH) = i D, cos Q AH. (4.97)

vl

is the spectral canonical expansion of the covariance function of
a stationary random function ¢y H. To this cancnhical expangion of
the covariance function there corresponds the canonical gxpansion
of the rgndom functicn
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z(H)= i a cos QA + P sinQ A, (4.98)

v=1 - -

where sin QUH and COSSQUH are the coordinate functions, and a and
B, are the random coefflclents.

The spectral canonical expansion of the random function has
several reatures. It has unified cocoordinate functions and, there-
fore, is wholly determinate if the random coefficlents, ‘on which
as before the following conditions are imposed, are found: they
must be uncorrelated and, in addition, must be such that

Mz]=M[p] =0; D[s|=D3)=D, (4.99)

To determiné the dilsperaions of the random ccefficlients of
the spectral canonical expansions (4.98), let us express the dis-
persion of the random function ¢(H) by its spectral density Se( 2

D, =2(S$.(2)de. (4.100)
Q0
and let us ddvide the interval of integration into a series of
elementary fintervals (QLA,QHJ)T We will have
D.=3¥D, (4.101)

we=l

In Eg. (4.101), we introduce the notation

: Qp.:,wl -
D=2 | S,edw | (4.102)
Ryt

Let us substitute the value of Dy from Eq. (4.102) in glace

o D, in Eq. (4.97), rememberingjthgt f&(ﬁH};:&(AH)

re(8H) =¥ D, cos 2 A =
E;"J'%l

2eosRAH | S (2)a2. (4.103)

ipds

A v—1i

The function SQ&B}in the interval (ébp ngﬂdoes not change 1its
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gign, and the Vdlue of €2, 1ies within the i1hndicated interval. Therqf

fore, we can apply the theorem on the mean to Egq. (4.103). We
will have

11
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oz {'JV-i—l
rE(AH)=3.z 5 S, (Q)cosﬂAHdQl

.v=l D1

or

ri(AH) == 25‘ S, (2) cos 24HdQ, |
B ‘ }

Eq. (4.104) is the Fourier transform of the spectral density
ol the random function é(H). Therefore, the dispersiocns of the
random coefficients of the spectral canonical expansion (4.98) are
terms of the dispersions of the random function . ¢(H) and are
determined by the equality

(4.104)

["'a+ !
sz2§34mdg

™

v—1

(4.105)

They can be computed if we know the analytic expression for the
spectral density of the random function ¢(H).

Now let us consider the variables

”, z'av-f;; B —ac (a= 1.9 ), l (4.106)

ey By L y Sy e

in which GM:l’Lh’is the root mean sguare deviation of the random
coefficients of the spectral canonicall expansion, and x and € are
the sets of normally distributed random numbers with zero mathe-
matical expectation and unit dispersicn. A seqguence ol these numbe
is set up on the basig of the random numbers Z% uniformly distri-
buted in the interval 15, ;7. Obviously, the variables o, and By
are random. Let ug find the mathematical expectation and the
digpersion of thege random variablezs. Based on the properties

of a mathematlical expectation, we have:

Miz| = M3 = oM |y} = oM e} =0
Do, = D[B,] =M |y2| = Al et = 1),. .

———

Thus, the random variable &y formulated from the root mean sguare
deviations of the coelficients of the canonical expansion (4.38)
of random function and of normally distributed random numbers ’
exhibilt the properties of cocefficients of the spectral canonical
expansion and can be easlly obtained.

Based on the foregoing, we can write the gpectral canonical
expansions of the physical parameters of the atmosphere as follows:

rg



&
H)+ap(ff)z

p(H)=m ( s, (1,008 QH + e sinQ H), (4.107)

t(HY=m,(H)+ 3 (H)E 5, (1,008 @ H + 2 sin Q H), (4.108)
w==]

T v(H)=m, (H)+ s, (H )E 7. (1,008 2 H + 2 sinQ H), (4.109)
? v=1

u(H)=mu(H)-J—G,I(H)ﬁsm(T_,COSQ“H—i—avsan“H). (4.110)

Ny |

A comparison of Eqs. (4.105) and (4.65) shows that the dis-
persions of the random coefficients of the spectral canoconical
expansiong of these physical parameters of the atmcsphare repre-
sent probabilities that the frequencies of the atmospheric peh-
turbations lie within certain interval and, therefore, take |
into account the features of the vertical structure of the fields
of thermodynamic characteristics of the atmosphere. The disper-
silons of the random coefficients of air temperature and density
are given in Table 4.12.

TABLE 4.12. DISPERSIONS OF RANDOM COEFFICIE NTS
OF CANONICAL EXPANSIONS OF AIR TEMPERATURE AND

DENSITY
' Gr - *
‘ glép 1t [ 2 | 3] 4« [ 5 | s § 7 1 s | o | wln
functions 2, km=Y
3 0.00] o8 | 027 [ oas | 045 | o5 ] o063 | o7z | os | ow | 0.9

S
A
:

0,060 0,203 0,527) 0,101 | 0,039 | 0,021

0,016 | 4,007 | 0,006 | 0,005} 0,005

IT 30, PR3[O, 240 0, 20660 0, 155 1 0,066 | 0,040 | 0,020 [0, 014 | 0,010 | 0,008 ] 0,007
I 0,332(0,213]0, 117, 0,088 [ 0,040 [ 0,029 | 0,028 | 0,025 [ 4,012 0,008 } 0,008
1A% 0,025 0,018 0,011 0,06 1,005

0,476| 0,209 0,095| 0,046 | 0,038 | 6,030

If we select as the convergence criterion the ceriterion

1= N'D, <o,

b

(4.111)

which derives from the confidence intervals and the precision of
the approximation of the correlation functionsg of air temperature
and dengity, then the largest number of terms occurs for the expan-
sion corresponding to groqb IIT of correlation functions, and the
smallest number of terms corresponds to the expansion that is part

ol group I of these functions, where tmemtotal five 1n the latter b
case.
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Dispersions of random functions of canonical expansions of
wind velocity components are given in Table 4.13. These data indi-
cate that (based on the above-indicated criterion) the fastest
convergence 18 observed for group IV, and the smallest -- for
group II. " 7

TABLE 4.13. DISPERSIONS OF RANDOM COEFFICIENTS
OF CANONICAL EXPANSIONS OF WIND VELOCITY COMPO-

NENTS
TCGroup | 1 I 2| s | af s | 6] 7V 8] ¢ 10 n
 of ‘ &, km™ ¥
functions

; 009 { ol | 027 ) 6as | vas | o5 ) 063 ] o072 | nat | ogo | oo

N

- 1 0,3381 [0,2941.0,1291/0,0627(0,0372(0,0246|0,0182( 0,0135{ 6,0111{ 0,0085 0,0061
H 0,2775 10,204010,1455(0,0881(0,0577,0,0342(0,0310 00214 00108 00139 0,0108
m 0,05201 030000046300344001320009400064 00023 00018 0,06015] 0,0013
13% 0,8152 0.0333002120 0145]0,0086/0,0069 00058 00043 0,0038 0,0022

4.4, |Shaping Filters of Physical Parameters of the Atmosphere

One of the forms of the representations cf random atmospheric
perturjbations can be shaping filters. Filters that permit shaping
a random process whose correlation function is known, from white
noise, are called sghaping filters.

The spectral density SQ(Q)\OT a stationary random function
¢{H) (as was shown in Section .1, centered and normalized values
of alr temperature and densgity and wind veloclty components as
functions of altltude can be placed in the class of stationary
random functions’) cap be represented as a rational-fractional func-
tion £ and can be wrltften in the form of the product of two co-
factors:

S () =5(2)G, {9); (4.112¢

___Cofactor Sl(Q) containg zeros and the poles of the function
S (9)] lying in the upper half-plane and is a bounded and analytic
fundtion in the lower half-plans. Conversely, cofactor G1{02)
contalns zeros and poles of the funhction S, (Q)located in the lower /1
half-plane and is a bounded and analytic function in the upper half-
piane. Forreal values of §2 -

G, (£} ZTE_)—:

where the overbar denotes a coﬁﬁigxly—conjugaté variable and, thus,

e Lo
SN =SS @ =[S, @)|" (4.113)

e - —— . L



Therefore, the function S (ﬁﬂ exhibits all the properties of
a frequency transfer function of a stable linear stationary minimum-
phase system.

If white noise exhibiting, as we know, a constant spectral
density and the correlation function

Ry (kY =3(h),

where 6(h) 1s the delta—function, is passed through a filter that
has a frequency transfer function $(18), the spectral density of
the cutput signal obviocusly will be

S, (Q) =D (iQ)]2. ] (4.114)

Comparing Fgs. (4.113) and (4.114) we can easily show that a
random process can be cbtained from white nolse if the latter is
passed through a shaping filter whose freguency transfer function
is defined by the expression

- B(9) = S (). I (4.115)

If the white noise hag a single intensity, the spectral den-
gity of the white noige is 1/2W. In this case the spectral density
of the output signal differs from Eg. (4.114) by the cofactor
i/2w , that is,

S (2 =f2];§‘1" (E2) | | (4.116)

or
1 H@Q) H(—iQ)

1 i
S*(g)‘“jEE"S'(Q)SI(Q}:‘?ﬁ“-FUQ) F(—@)

where H(if)) and F(if2) are polynomials in £, in which a1l zeros are
in the upper half-plane symmetrically with respect to the imaginary
semiaxis. In addition, the =zeros of each of the polynomials H(iKD
and F(iQ) are pairwise conjugate complex numbers lying 1n the left
half-plane of ithe variable 1§, Therefore, all coefficients of the
polynomials H(if2) and F(if)) are positive, the frequency transfer /134
function of the shaping filter is

@ (1Q) = ”?((T'&})"j (4.117)

and the stationary random function ¢€(h) ig asgociated with the
white noise v by the linear differential eguation

F(S)qoa=f/(s)_5.| (4.118)
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In Egs. (4.118), F(s) and H{s) are polynomials in the differ-
entiation operator s = d/dh with constant coeffic¢ients

F(s)=as 4a, "7 '+...+as5+a,
_ . , (4.119)
H(s)=0b,s"+b,_ 5" +.o..+bs+b ||

Now let us examine the shaping filters linking the physical
parameters of the atmosphere with whife noise.

In Section 4.1 it was shown that centered and normalized
values of alr temperature and density and wind velocity components,
being functions of altitude, can be placed in the class of sta-
tionary random functions, and depending on the atmospheric layer,
their correlation functions are determined by the equality

: ' 4. 220
r,(Af) = e=** ( )

or by the expregsion
re(Af) = e " cos @ Ah (4.121)
If the correlation function of the above-ligsted random func-

tions 1s expressed by fthe exponential (4.120), the normalized
speciral density is

T e
S (2) == k“—l—Q?J (4.122)
Obviously, Eq. (4.122) is eguivalent to the expression
1| Vi (4.123)
S, (2) = - H,(,IJ

By comparing Egs. (4.123) and (4.116), we see that: the random
function ¢ can be viewed as the result |of &he indefinitely long
passage of unit-intensity white noise through a shaping filter
having the frequency transfer function

{l!(f‘.!):%%"—‘ (4.12&)

Now let us compare the frejuency transfer functions (4.124)
and (4.117). Obviously, the polynomial H(i)) is of zero degree,
and the polynomial F(if) is of the first degree. Thus, Eg., (4.118)
bacomes

a d?(h) + a,¢ (f) = b"g (4.125)

/135



where
fac,:k a; =1

; ;buzlfgam}

For the casges when the correlation function of a random func-

tion is described by Eq. (4.121) (groups I
functions of air temperature and density),
1s of the form

S, (9 =%

The
bBut

numerator of Eq.
the denominator has four complex groups

and II are correlation
the spectral density

S (=9 A, * (4.126)

(4.126) has two purely imaginary rootslQ=xig

Q =£Quxik| which

lie
ing
Q=20,+ik)let us write out Hqg.
which will be of the form:

symmetric relative to the real and imaginary axes.

V(3 +iv) ’ |

0
S0 = _Zf"' PERTRE YN TR !

Like (4.123),

the roots lying on the upper half-plane, that is, Q=ig|
(4.126) for the real values of §,

"By select-
and

(4.127)

(4.127) shows that the random function

é(h) can be regarded as resulting from the passage 6f white noise

through a statlionary linear system
transfer function is expressed by the egualiiy

S

W)y =4 T Wi\ when « = | 2%k,

Since the numerator in Eg.

(shaping filter) whose fremmmcy O

(4.128)

(4.128) is a polynomial of the first

degree, and the denominator 1s a polynomial of the second degree,
the efjuation linking the random function ¢( h) with white noise

v is of the form
0 u"kp(lu
QT

sy d iy
e L —an —k: a4y7 (-’l) = hlmr + /)Uﬂ'

in which

w, =@ a, = Rk bo==BVYCh: b, = |V 2%

dg == 1

(4.125) and (4.129)

eguations

(4.129)

Table 4,14 gives the values of the coeff1c1ents of differential/l 3
% for different groups of correlation

functicns of air temperature and density (the number of the func-

tion group, as indicated in BSection 4.1,

corresponds to a specific

atmospheric layer, different latitudes, and different half-year

periods).
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TABLE 4,14, COEFFICIENTS TABLE 4.15. COEFFICIENTS

OF DIFFERENTIAL EQUATIONS OF DIFFERENTIAL EQUATIONS
LINKING FLUCTUATIONS IN LINKING FLUCTUATIONS IN
AIR DENSITY AND TEMPERATURE WIND VELOCITY COMPONENTS
WITH WHITE NOISE WITH WHITE NOISE
. - - o —— d_ - C L ;-
Coef-i{{|__Group of functions . Coeffi- || Group of functions ]
ficient| 1 | a | wm | w Clent f} v | o | wm | v ]

ao 10,0475 0,0529:0,1570 [ 0,0075 ‘ ap |0,0164(0,190010,0550|0,0275

ay |0,0800| 01880 | 1.0000 | 1.0000 a, 102000 1,0000] 1000010000

a; [1,0000(1,0000) '— | " @ jLooop! —

b, |0,0620(0,1005|0,5648 | 0,4425 by 10,067510,61020,3321 |0,2352

b, 0.,2840 0.4350 | — -— b 10,4478 — — —_

| L . N A
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The corresponding functions for the meridional and zonal
components of wind velocity are in Table 4.15.

In Table 4.15, just as for air temperature and density, the
number of the correlstion function group determines the wind
velocity component, the atmospheric layer, the latitudinal group,
and the half-year. The placement of each of the groups correla-
tion funections of wind velocity in the above-listed situatlons is
determined 1n Section 4.1.

4.5. Representation of Atmospheric Perturbations Using Eigenelements
of' the Correlation Matrices of the Physical Parameters of the Atmo-

sphere

An expansion of atmospheric perturbations in eigenelements of
the correlation matrices of the physicalparameters of the atmosphere,
or in the principal components is highly attractive. It is shown
in Zﬁ;7 that these expansions are optimal.  Moreover, in several
cases the elements of these expansions can be given a definite
physical mean. Therefore, expansions in eigenelements of correla-
tion matrices are finding growing use of late.

Let us represent the normalized centered function referring
to some physical parameter of the atmosphere #{t, H) in the form
of the series

o (£, H)m;z“(f)uy(!{). 1 (4.130)

Eq. (4.130) is the discrete representation of the function ¢ (v, H) /137
(the subscript & will be omitted in the following treatment).
Therefore we can intrcduce the notation:



?(fiﬁ)::c?i} (3:112!"':”?’)
cu,(H)y=u, (j=1,2.., n),
Z(f) =2, (+==1,2,...).

We will seek Eq. {4.130) in the class of the optimal approximations
to the function ¢ in the sense cof least sgquares. To do this,
let us find the mlglmum ol the expression

A= ZE [w- Zzuu,,]"‘]ﬁ (4.131)
i "
Let us agsume that the functions zZy,3 and uyj are orthogcnal,
that is,.
szi = for v,

‘?
u”uu 0
J'

flor VFEp,

Then Eq. (X.131)} can be rewritten thusly:

4= E 2 ['Pu 2‘*’!12"31" w7t Zz 1“3;]

(4.132)

To determine the minimum of Eq. {(4.132), it is necedsary to set

eqgual To zero the derivatives 83 |and d3 As a result, we get
these expressions oz, ou,,’
I
N 0=ty % (4.133)
2‘{’:;“ —ZV:A (4.134)
Suppose the functiOﬂs Uy aﬂe nermalizad, that is,
- —
Nz = 1. (4.135)
7 .
Then
2= M (4.136)
J'

Substituting Eq. (4.136) into Eq. (4.133), and using the notation /138
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i . (£.137)

A== W 72
v md v
and
I 4.138
rlk=‘;2wu‘?m, ( 3 )
we arrive at the equality
Figlep = i1t . f=1,2,... n),
27t =k, ‘ D (4.139)
which in matrical expression is of the form
"ru =, (4.140)

———

Obviously, in Eg. (2.140) A are eigenvalues, and u are the corres-
ponding eigenvectors|of the correlation matrix r. Eq. (4.140)
means - that we are - seeking for such a vector u that is trans-
formed by the matrix r into vectors differing from the initial
vectors by the scalar multiplier A. The matrical equation (4.140)
in the expanded form can be represented thusly:

(ru-—wnu, +r13ug +ooFdr,u, =0
Faptty ‘.L"("u-:""}\)u:‘!‘---"Fr‘:n”u:O

(L.141)

. e . .
-----------------

Tty F Tttt (1, M, =0

These equations as we can see comprise a system of linear equations

in u;. A nontrivial solution to this system exists if and only if
A are the roots of the characteristic equation
‘rj}€!:0.’ (4,142)

Correlation matrices of the physical parameters of the atmo-
sphere are|real symmetric matrices. Therefore the eigenvalues
are also real. In addition, to satisfy Eq. (4.137), they must be
pogitive.

Using the orthogonal transformation, correlation matrix b
can be reduced to the diagonal form. If T is the orthogonal matrix
of eigenvectors, and[T* iz the transposed matrix corresponding to
it, then '

T =AL (b.143)



[P

where A 1s the diagonal matrix with elements ‘i, s ... Lnt in
decreasing order. This requirement on the arrangement of Ay,(v =1, . }
25 ey n% is customary and achieves unigueness. If we take the /139
determinant of the matrix in Eg. (4.143), we get

| AL =|T*[IrIT|=r] (b.144)
and, therefore,
) |f|=}~1>(}.2><...><:’~n. (4.145)

Eq. (L.145) shows that if we know the eigenvalues of the correla-
tion matrix, it is not difficult to compute the determinant of

the latter. Multiplying Eq. (4.143) at the right by T* and at the
left by T, we get

r=7are. | (4.145)
The matrixz that is the reciprocal of matrix r is

o TAT - (Uh147)

_ The latter equality can be used in finding a matrix that is
the reciproqél of the correlation matrix when we know the eigen-
“values and the eigenvectors of the correlation matrix are known.
In addition, from Eg. (4.143) we can obtain an important property
of correlation matrices. To do this, let us take the trace of
the matrix Ain Egq. (4.143)

SN = S,(T*T) = S, (rTT*) = S, (rE) = S, ’i (4.148)

Eq. (4.1L8) indicates that the sum of the elements along the
principal diagonal of the correlation matrix is egual to the sum
of its eigenvalues.

As indicated above, the eigenvalues are the roots of the
characteristic eguation (4.142), which is an equation of degree n
in A. Af'ter they have been computed, we can solve the system
of equations (4.141) for determining the eigenvectors of matrix r.
Actually, by assuming the system (4.141) successively ‘A=, A=ig
and 80 on we get n different solutlons to system (4.141), which
then will represent eigenvectors of the correlation matrix r:

2

Y By .-l g (for W= 1) ’
oy gy ooy . o) ”’-'ﬂ (fOI’ )‘=)\2)
W7 Hpyy Hgone ..} I \ -
ny n !7‘__11—4 __a#nn (fOI’ = )\n)- J
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TABLE 4.16. EIGENVALUES #jAND THE EIGENVECTORS OF THE CORRELATION MATRIX
OF AIRDENSITY CORRESPONDING TO THEM. MIDDLE LATITUDES, COLD HALD-YEAR

i ’ 2 ! k3 ' 14

3,028

24511

2,0914 |

13153

0,9993 I 0,7812 | 0,6846

0,6537

0,5203 | 0,4617

0,3204 [ 0,3051 [ 02270

0,0757

-0,1239
-0, 1202
004738
0,2253
0,1138
.0341
0, 0860
0,3351
,3191
0,7904
0,400
0,4252
0,3770
0,2644

0,4076
0.3130
01587
_0,4991
~0,4532
0,2997
_0,1846
_0,0743
0,0169
0.1197
0,1340
0, 199D
0.1754
0,1543

—0,2604
-0,1955
0, 1031
0,2193
—0,0366
-0,2151
—0,4890
~0,4979
—0,3552
—0,1893
0,0032
0,1396
0,762
0,2986

0,3382
0,3367
0,1486
0,0135
0,2564
0,4086
0,2493
0,0413
—0,2447
-0,2757
-0,1824
0,0798
0,3195
0,4219

10,0373
0,236
0,9132
0,0975

—0,1636

-0, 1680

~0,0139
0,032
0,0575
0,0058

-0,0188
0,0708

~0,0872

—~0,1565

~0,3581
0,4104
~0,1347
0,0997
0,1199
~0,5485
0,1237
0,1780
0,3035
-0,1703
-0,3116
-0,1559
0,1477
0,2205

0,1276
—0,0081
0,1166
-0,2139
0,4082
01736
~0,6676
0,0461
0,3652
0.1713
~0,1779
~0,9618
0,1190
0,0509

-Q,4011
0,6331
=0, 1199
0,0185
—0,0184
0,3886
—0,0680
-0,3951
0,0349
0,2375
0.1245
0,0863
-0, 1306
-0,1176

0,0225
—0,1189
0.1306
--0,1751
0,1489
—-0,1508
0,3235
—0,3264
—0,0712
0, 4665
0,0734
—0,3486
—0,2422
0, 4866

0,0858
0,2068
-0,0332
—0,0896
(,5853
—0,3537
-0,0179
0,0830
-0,4595
0,1070
0,3268
06,0129
0,04929
—0,3572

-~0,1320
¢,1571
-0,0003
0,1609
—0,2968
0,1228
-0,2567
0,4811
-0,2031
-0,0274
0,3816
-0,4983
~0,0245
0,2307

\..
-0,035¢
~0,0056
-0, 0921

0,234
0, 1825
~0,0177
0,0184
—0,1475
0,3311
—0,6068
0,5557
0,0132
-0,2678
0,1456

~0,1075
~0,0234

0,1379
-0,0358
~0,2203

0,3195
~0,2076

0,0651
-0, 1930

0,4932
-0,6095

0,3290

10,0250

-0,0935

0,5397
0, 1744
-0,1815
0,6768
01,0385
~0,1456

0,134

~0,1728
0,1641
0,0030
0,0812
~0,0250
~0,2814
0, 0496

oL T/



1A

TABLE 4.17. ‘
OF AIR TEMPERATURE CORRESPONDING TO THEM.

EIGENVALUES {2,/ AND THE EIGENVECTORS OF THE CORRELATION MATRIX

MIDDLE LATITUDES, COLD PERIOD

14

o ;
—km AT ' 30541 1 1,9582 I 1,174 0,9327 ! 06465 | 0,504 | 04702 f 4268 | -0,3969 ! 04307 ’ 2914 ' U2FE | G2
|

3 1-0,0364| 0,4598| 0,0723| 0,2467| 0,2311|-0,0801{ 0,2446| 0,1986| 0,1225|-0,2695{-0,2718| 0,5297 [=0,3420( 0,054
6 1-0,0721| 0,5076; 0,1049|-0,0331| 6,1441| 0,0282| 0,0220| 0,0015| 0,0708 | 0,2739]--0,0928 | 0,04421 0,5048 | —0,5980
9 1-0,1001 ) 0,5034| 0,0729{ 0,0119( 0,0265| 0,1849]-0,1580|-0,0053| 0,0857| 0,2407} 0,2743|-0,1078! 0,1115| ©,7008
151 0,1564{-0,4001 |-0,1182¢ 0,4352| 0,0132| 0,0807| 0,0521} 0,0808| 0,2981| 0,2783] 0,0455| 0,4731] 0,4195] 0,1647
20| 0,1441{ 0,1316|-0,1543| 0,8093] 0.0687 |0, 1388 |-0,0756 |_0,0873 -0,1524 |-0,05171 0,0784 |-0,4408 |—0,0889 | —0, 1078
25 0,2840f 0,2215|-0,3139 |-0,0699 |-0,3678 |-, 2360 -0, 1129 -0, 2393 [-0,4820 |—0,2423 1-0,0480 | 0,3222| ©,3401( 0, 1080
30 10,3152 0,1734)|-0,3204|-0,0968 |-0,4070 |0, 1431 |-0,0174 | 0,0147| 0,3472| 0,4227| 0,1771| 0,065 |—0,4575 | -0, 1662
35 | 0,3829) 0,11841-0,2507 |-0,1806 |-0,0266 | 0,0469] 0,2281| 0,2733| 0,3804|-0,2803 [-0,33141-0,3937| 0,3063| ©,1276
401 0,3333| 0,0291-0,1688 10,0180 0,1987| 0,7972|-0,2416| 0,0328 |_0,2305} 0.0005|-0,0396] ©0,1040|—0,1652| ~0, 1348
451 0,4018|-0,0637] 0,07011-0,1444| 0,3712|-0,1995| 0,3173| 0,2359] 0,2012 |-0.0832| 0,6516] 0,0341 |-0,0226| 0,0328
501 0,372 |-0,0238] 0,1919|-0,0004| 0,3992 ~0,1904| 0,1207 (-0,5410}-0,0515| 0,3740 |-0,3944 {-0,0367 [-0,0626| 0,1098
35 10,3086 10,0016 | 0,3913]-0,0107| 0,0519|-0,1813| 0,6816]-0,0407 | 0,3556(-0,3224| 0,0048 | 0,0768! 0,0171 ~0,0639
60 | 0,2387| 0.0174| 0,4752] 0,0740 —0,3047 |-0,0303 |-0,0357 | 0,5691 }—0,3363] 0,3068|.0,2738 |—0,0704, 0,0194} 0,0588

'[ | 0.1755| 0,0339| 0,1599] 0,1260( 0,4407| 0,3276| 0,4421|~0,3695] 0,1390|-0,2316] 0,1574 |-0,0214} 0,0131 —0,0495

TH/
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TABLE 4.18.

EIGENVALUES *. AND THE BIGENVECTORS OF THE CORRELATION MATRIX
OF THE MERIDIONAL WIND VELOCITY COMPONENTS. COLD HALF-YEAR, MIDDLE LATITUDES

N ‘ 1 2 a 4 5 6 - 7 ! 8 ¢ 10 11 l 12
- g ’f—:‘z l.,
—— 4 km - .
41,0030 2,5176 1,8315 0,9775 l 0,6990 [ 01,4997 l ,3950 0,3758 [ (L2673 0,1920 ' 0,741 | 01,1193
3 o.m&sl 0,5040 |—0,0816 |—0,1936 ‘-—0,1522 —0,4931 | 0,1170 | 0,4789 | ©,1733 |—0,3709 | 0,1063 | 0,0464
19 0.0823 | 0,5621 |—0,0709 |—0,1493 |--0,1820.| 0,0823.] ~0,0489-{ ©0,0404 |~0,2898 | -0,5645 1—0,4350 | O, 1185
15 0,0259 | 0,5338% |—0,1152 | 0,0370 |—0,1104 0,509% —0,1729 | 0,4006 0.1562 |—0,3130 | 0,3226 |—0,1040
20) 0,0419 | 0,2327 |—0,3524 | 0,4977 | 0,7340 [—0,0180 |—0,2141 |—0,1498 [--0,0222 | 0,043 '—0,0378 | 0,0792
25 0,1760 |—0,0896 {—0,4838 | 0,3920 |—0,3841 |—0,4116 { 0,2336 | ©0,4195 [-—0,0098 | 0,064 | ©,0650 —0,1307
0,2942 |—0,2025 1—0,4143 0,052 —0,1970 | 0,0986 [—0,6571 |—0,2166 |--0,2853 |—0,2078 |--0,15(8 | 0,151t
KES 0,3452 |—0,1538 |[—0,3307 | 0,1734 |—0,0465 | 0,3645 | 0,2259 |—0,3552 | 0,458 | 0,3366 | 0,126 |—9,2437
10 | 0,397 |—0,1010 |-0,1170 |—0,3613 | 0,2274 | 06,1231 | 0,5923 | ©,1863 |-—0,3876 |—0,2610 | 0,0087 | 0.3330
43 0,4201 | 0,0073 | 0,1448 —-0.'1922 0,9569 |—0,1864 |—0,1553 | 0,3500 | 0,3770 |-0,1677 \—0,5338 |—0,2510
&l 0,4132 | 0,0481 | 0,2611 [—0,0474 | 0,1075 |—0,2710 |—0,3344 | 0,1381 | 0,0729 | 0,1076 | 0.5461 | 0.2665
55 0,3826 | 0,0687 | 0,399 | ©0,2558°1—0,3105 | 0,0600 | 0,0571 [=0,2048 —0,4674 [—0,0583 | 0,0962 |[—0.6220
60 0,3104 1—0,0136 | 0,3335 ] 0,5191 |—0,2719 | 0,2257 | ©,1526 |--0,1368 | 0,2208 |—0,1316 [—0,2216 | 04853
.

ST/
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TABLE 4.19.
OF THE ZONAL WIND VELOCITY COMPONENTS.

EIGENVALUES ’“ AND EIGENVECTORS OF THE CORRELATION MATRIX
MIDDLE LATITUDES, COLD HALF-YEAR

L i ) K3 4 5 3] ’ 7 8 9 111 ’ n ! 12
H‘———’ l\)
' km
5,721 2,8954 ] 1,4951 , {0,605 ’ 10,3172 l ) 9,2633 ] ,2142 01722 ﬂ,lﬁ-lﬂ l 0, 14924 ] (].()1-47 l 0,0351
K] 0,0272 0,4963 10,1711 —{0,3375 —4,6539 0,0320 —0,3869 0,1815 0,0‘225 0,0636 —0,0168 00,0167
161 0,0572 | 0,509 10,1714 |—0,2994 | 0,091 | 0,0033 | 0,7012 {0,317 | 0,107t | 0,051 | 0,037 | 0,0162
15 00,0263 90,5130 wO, 1460 02,0116 0, 6896 —0,7 (462 —0,4339 {0847 —(,1462 -—0 L0024 ,0150 —0,0264
20 0,0u13 (4, 3973 0,2100 (,8036 (—0,2425 {—-0 2549 0,1042 |—0,0525 0,0246 [0, 0449 -0, 0024 0,00633
35 0, 1804 U, 1808 0,6-}05 —(, 1410 0,0002 0, 4623 —0, 1005 —(, 2047 —0,1410 —0,4427 0, 1427 10,048
30 0,3404 0‘0512 0,4103 |—0,0404 0, 1044 0, 16589 —{0, 0094 0,1419 0,2306 0,7432 —,2147 ~0,01749
35 0,3674 | —0, 029} 0,2334 [—0,2487 0,0167 10,4970 0,2512 0,5863 —0,1255 —;0,2803 ~-0,0628 (4, 0266
) a, 1794 —0_1425 0,0312 —0, 1443 [—0,0058 -—(0,4192 —0,2706 10,4533 0,4442 [—-0,0468 02,3170 0, 2513
43 0,3939 1--0,0885 |—0,1307 0,0004 |—0,1026 {—0, 1662 [—0,0681 —0,3H3 1—0,3312 40,0296 |—0,2338 |—0,6903
) 0,3856 —0, 0747 —0, 2144 0,0450 |—0,02495 0, 1559 |—0,0011 —0, 1475 —0, 4988 0, (.)334 —{), 2704 0,6535 |
%] (,3773 {—0,0414 —0, 2091 0,139 |—0,0089 0,20673 0,007 (0,2536 —0,1351 0, 1353 O, 7477 10,1347
i B0 00,3544 0,0009 --0,3264 0, 1095 0,0822 0,3496 1—0,0064 0,1822 0,5506 |—0,3762 {—0,3608 —0,0179 "
B ]

CHi/
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Thus, the elements of expangion (4.130) proved to be deter-
minate. Practical methods of obtaining eigenelements of correla-
tion matrices can be found, for example, in Z?

Tables 4.16 - 4.19 contain the eigenvalues and the eigenvecs
tors of correlation matrices of air temperature and density and
of wind velocity componants.

It is not difficult to see that for all of these atmospheric
parameters considered, the sums 0f the eigenvectors are sxtremely
¢lose to the traces of the corresponding correlation matrices.

A small difference in the fourth decimal place is determined by
the gpecified precisicn of computations and by rounding-off.

Fig. 4,20 gives the coefficlents of expansions (4.130)
(principal components) computed for the profiles of air tempera-
ture, air density, and meridional and =zonal wind velcoclty compo-
nents Indicated in Tables 4.8 - 4.11.

TABLE 4.20. COEFFICIENTS OF EXPANSIONS
OF AIR TEMPERATURE t, AIR DENSITY &,
MERTIDIONAL u, AND ZONAL v WIND VELOCITY

COMPONENTS
T

z 4 ' [ I b
2 2,0421 0.8646 1,0335 (4, 9860
22 2,2787 —qQ,0392 0,4842 0,4143
F 1,2696 'y —@,7350 04,1167 | —0,3479
FA 1,3934 . 04,3650 —0,1347 | —0,1187
Z; 0,9247 | 0,1616 —0,092! | —0,6319
z, 0,0469 '| —0,0250 0,0265 { —0,0048
2; 0,2286 || —0,2010 0,0126 0.0329
23 0,4349 —0,0368 0,3179 -0,1322
Zy 0,8338 0,0039 —0,04069 | —0.0608
Z1o 0,3390 00,1046 0,0425 | —0,0732
zy | —0,2192 0,2580 0,2871 | —0,0273
Zyy 1,1289 —0,0243 0,2579 G, 466
Ziy 1,6052 0,08]4 v -

s 0,1189 0.0617 — =

We can suggest another extension of the physical parameters
of the atmosphere, somewhat different from BEg. {(4.130), based on
the elgenelements of the correspondlng correlation matrices.
Suppcose we have a vector of |initial values of parameter ¢ . Let
us determine the orthogonal transformation

Y =T*4g (4.149)
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where T as before iz the orthogonal matrix, and let us find the :
dispersion of the varlables (4.149), denoting it by A. Obviously,

-t

A %Mly)'*l =MIT*W*T}~—-T*rT. f (4.150)

By comparing Egqs. (4.150) and (4.143), we see that if we take
in transformation (4.149) the matrix of eigenvectors as the ortho-
gonal matrix, then the corresponding eigenvalues of the correla-
tion matrices of initial parameters are dispersions of the new
variables Vi (u=1, 2, cvey D

In order to chbtalm the p-th principal components zy 5 We will
normalize the variables V- This means that we will "adjust them"
80 that the dispersions(are equal to unity foru= 1, 2, ..., 1.
Obviously, this aim will be achieved 1f we assume

z= ATy, (4.151)
Referring to Eq. (4.149), we have
2= AT (4.152)
or .
— —h
e=TATR (4.153)
If we introduce aﬁ§notation
W= TAR f (4.154)
ultimately we reach the extension
I.ht:l

1

in which tThe principal components 2y and their weights wiu are
determined by Egs. (4.152) and (4.154), respeciiively.

Using Egs. {(4.150) and (4.154), we can easily show that

W — rj and e W= A,

Az was indicated, S.r = S, A . This means that the total dis-
persicn of the variables éi 1s equal to the total dispersion of
i the unnormed ] components Yy - Thus, we cah find the fraction
introduced by each component or by a series of components to the
total dispersion. We denote with R=

Ri= 25— | (4.156)
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Since for the correlation matrices Spr = n, where n is the
order of the correlation matrix, criterion (4.156) can be rewritten
as

b=

I

Ri=2= (4.157)

Fig. 4.5 shows the varlations in the criterion R= gs a func-
ticn of p. Criterion (4.157) has the significance of fhe relatiye
precision of expansion (4.130) then in it a specifiad number of
terms is used. Using Fig. 4.5,] by specifying the precision of /146
the expansion, we can determine the number of the terms in series
(MJISO needed to achieve the specified precision. In Fig. 4.5
it follows that the optimal convergence 1s shown by the zonal
wind velocity component.

. Using the eigen-
kﬁ-j elements ol the correla-
tion functions of the
physical parameters of
the atmosphere to deter-
mine the expanslons for
the normalized centered
functions ¢z, by means
of Hg. (M.6§ we can
write out the corres-
pondiyg extensions for
the particular physical
parameters of the atmo-
sphere we are consgider-

ing:
i
‘ i&n
' J
Fig. 4.5. Dependence of criterion R on
the humber of fterms in the expansion
o e N ST
(¢, H)=m (7Y + o (H) 2 z (u (H) (p<n). (4.158)

r=1
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It must be noted that expansion {(4.158) essentially is canoni-
cal. Actually, functions ur g are nonrandom anﬁ can be treated

as coordinate functions, and the principal components zr(t) can he
freated as uncorrelated random variables with zero mathematical
expectation. The lack of correlation of the principal componants
and the zero eguality of thelr mathematlcal expectation is deter-
mined by Eq. (4.152).

L4.6. Discretercontinuous Represenfation of Random Processes Within fluz
the Frame of Reference of Correlation Theory

The above-examined canonicpal and noncancnical expansions of
random processes are essentlally representationsg in ths c¢lass of
continuous coordinate funcitions and continuous random variables
with specified distribution laws.

Within the frame o©f reference of correlation theory, we can
obhtain expansions of random functicons i1n the class of continuous
coordinate funetions and random variables of the digcreste type with
specified disftribution. Let us show this by introducing the se-
‘quence of Independent random variables of the discrete type

":\lyl\'-’i"'a"r\mj (4.159)
each e¢lement A. of which inlthe realizations can take on the speci-
fied number of preassigned states AJ (j =1, 2, ... n) with the
probability P Pﬂ . Here let us assume that the following system

of identifties T8 satisfied

s e ey M)

4 a
Nrhil=1 @=1,2

=

(4.160)

- [
Representing the centered random process g(t) in the form of

the canonical expansion -
o m
H0= 21 A*xv UT‘J

MIA| =0 (i=1,2,...,
MIAA) =0 (j=12,..., m),

MIAT] = 2 PR =D (i=1,2,...,m), (4.162)

F=1

and using the conditionsw

m) (4,161)

¥

we can in accordance with Eg. (4.71) write out the identities
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Riu,f);=}511xvﬁ)?Jtﬂ,

ve=1

Lh(at)==ls D, [x, (O]
vam

Using the methods presented in Section 4.3, we can find the
coordinate functions Xu(t) and the dispersions of random variables
Dl} (1}: 1y 2, oo, m)

If above the process of constructing the canonical expansions
1s ferminated at this point, then under the discrete continuous
representation of the random process is necessary to set up, based
on specified dispersions of ths random variables of the discrate
type D, to construct their distribution series. To solve this
problem, let us use Egs. (4.161) and (4.162). DNote that the prob-

lem of constructing the distribution series has a set of solutions.

Let us consider a series of its solutions.

To satisfy condition (1.61), the number of states of random

/148

variable A must be greater than or equal to two. Suppose the random

variable has two states A7 and A, with probabilities Py and P..
Then EHas. (4.161) and (4.1%2) and condition (4.160) enables us o
write out the system of eguations

M[A] :‘)‘IPI + 0P, = 0;

MIA°] <33P, 4-38P, = D . _
pi;;‘p_":i_ (4.163)

One equation is lacking for the solution of system (4.163},
therefore let usiassume that P; = P,. Then we will have

o 1
Pi=P2=T;
Ay = — s

h=[h|={k[=VD. (4.164)

Thus, using Eq. (4.164), let us present in Table 4.21 the

modull of the random variables of the discrete type for the canonical

expanslon of atmospheric perturbations whose characteristics are
given in Tables 4.8 - 4.11 (cold half-year, middle latitudes).



TABLE 4.21. MODULI OF THE STATES OF
DISCRETE-TYPE RANDOM VARTABLES

1

= ona i . -
o ggmggngnt, Air tem-| Air .:l-
Meridional component ; OF Wind | perature __'.d.en:s,ity{
of wind velocity velocity ) B g
1,000 1,000 1,000 1,000
0,695 0,650 0,73 0,936
0,674 0,644 0,916 0,996
0,942 0,856 0,777 0,581
0,96 0,912 0,858 0,87
0,834 0.615 0,945 0,91
0,709 0,576 0.71 0,851
0,726 0,532 0,756 0.826
0,725 0,435 0,820 | 0,841
0,602 0,330 0.842 0,770
0,664 0,338 0,79 0,716
0, 556 0,375 0,856 0,717
- — 0,857 0,634
— — 0,832 0,616
It 1s Inconvenient to use the data listed in Table L.21, /145

therefore we can replace@khem with guantities that are equal to
zero for all the random factors, by multiplying in advance all ‘
the coordinate functions by the magnitude of the state listed in

this table.

Now all the absolute values of the states of the random variables
of the geguenc ‘(4.159)/will be equal to unity, and the states has
such will be determined by the values Ay =1 and Ao = -1.

The number of possible states of the random sequericq (4,159)
here is 2M, where m is the number of discrete random variables,
and the probability of each state will be determined here by the
quantity 27, gince each state is equiprobable.

We can gimilarly perform calculations when the number of states
is greater than 2. Thus, when n = 3 we will have the system of
gguations:

MIA} = MNP+ 0Py + 4Py =0
M[A] =KPy + 43P +15Ps = O;
P1+P_1+P3:31. . (4-165)

Obviously, in this case
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P =P, =py =1,

g
’.-_) pesd 0; )‘I = }-3;

Pl =1%] =% =V15D, (4.166)

— A —
When D = 1, we get L’=]{L5=5L22 %==“‘}ﬂﬁq25—vhzi The number
of' states when n = 3 is considerably increasﬁd and” is equal to 3m,

and the probability of each of them is ?educed and 1ls equal te 3-In,

When n = 4, we can easily obtain the followihg equations: _ /
M [i\] = }\1p[ + }v_bpg +13P3 + )\.[P.; = {);
ﬁ’f [1\.21 = }.fpl + lng + }%qu -l— A3P4 == D:
P4 P+ P4 P=1, (4.167)
' whence it follows that .
)D Pl“"—‘P =P3=P‘=T:
}‘l = — }i- n'_; = — ]-]:
}.f + }-g = —2[’)3_ .

The sysfem (4.167) does not enable us to determine all the
discrete sfates uniguely. Let Ap = -0.5. Then when D = 1, we get

e T 1
That is, A; =]-1.32, x, = -0.5, Az = 0.5, and My = 1.32.

In these transformations all the discrate states are equiprob¥ £150
able, since Pl ﬁ P2 = P3 = Pq.

We can set up the'problem of determining the discrete states
-andftheir prokabilities from the condition of satisfying th e moments
higher than.the second order, for example, normal distribution.
Here we will [have for n = 2:

M [A?k-H] = }_?k+1p1 i Lgrkﬂpg :'0 (k=019 )
C M[V]=NP tuP =D |

Hence follows the solutilon obtained by:

’ T
by = = hy = MD; Py :P._,m%,

For n = 3, we have the foiiowiﬁg system of equations:
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1
'
r
|

i

whence 1t followg that

ar

Lok,

M =0, £=0,1,2,.. ;

MV =13P £8P, 40P = D = o |

M ["\4] = NP 'i‘l‘)\‘zipz-l-:‘gpa = 3d*;
PI+P2+p3= l,

)‘3 = O» ll : ""‘ }~3; Pl = Ps;

)\1= ]/5:; ).2-——0: "'3 = VT;G.

2)\%101:0?;
2P, = 33"

2P Py =1
PL=P3=""L; Pz=“"_g";

.6

3

1
Y

When n >3, we can easily perform similar transformations.
The results of calculations up to n =

|  TABLE 4.22. DISCRETE STATES
Numbe; of f i 2 3 4 5
.states j
1 — — _ — —
2 % — — — —
3 V3s 0 —¥as — -
S 1 1 (I _
4 l,-'f (- -I-;_?a T a ~3F |- ll/_ﬁ——_'";??““
5 | Vo yTo: (Vs—yin: o | —Vs—yios |-V 54y T0s
TABLE 4.23. PROBABILITIES . OF STATES
‘Ndmber of j ) " 4 s 5
'states - - i ' _
|
o - - - - B
| 2 L A — — —
: p; 7
J 3 g 2 1 N _
| 3 3 G
E A 5—2V7% |39--2VZ [3942yT | 5—2¢T B
[ 8% 3 73 3 .
| - 7—2)T0 | 7 2V1D 8 7+2V10 | 7—2)10
; " 60 60 5 80 60
1
[
!

5 are given in Tables 4.22 -
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- ¥ 4is a random variable.
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TABLE 4,24, MOMENTS OF THE k-th

ORDER
— : i
‘Moment (| Normal L states ..
number * distr, 1  ® : ! ?
! 0 0 0 0 0
2 3? ¢ a? 3° 37
3 0 0 0 0 0
4 3= a! 331 et 33t
3 0 0 0 0 0
6 1554 3 AR 1535¢ 153
7 0 0 0 0 0

Table 4.22 contains the numerical values of discrete states
of' the random discrete variable as a function of the number of
states. Table 4.23 gives the probabilities of the discrete]states,
and Table 4,24 gives the numerical values of the moments for the
digcrete random variable and the continuous random variable with
normal distribution.

When the number of states nand By =1 (1 =1, 2, ..., m),
the probability of each state of seguence (4.159) will be squal
to n™M, and the number of all states -- N =¢hifl, When there are
sufficiently large m and n, the number of all states N of "sequence
(4.159) will be sufficiently large, which represents serdcus dif-
ficulties in investigating the scatter of the motion of flight
vehicles in the earth's atmosphere. Therefore we have the necegsity
of examining the possibility of obtaining a discrete-continuocus 152
noncanonical representation of atmospheric perturbations in the
form

iy -E(t):=A1cosQ*t+—ABSHIQ*;:]'

where A, and A, are random variables of the discrete type with
the characteris%ics:

MM = MIA]=0; )
M =m[al] =15
MM ] =0

Congidering the results obtained in Section 4.2, to determine
the characteristics of the random variable % we will have the[
identity h

o

Gt = M feos2%1). (4.168)



Ir rgj;ﬁtf that ls, a random variable of the discrete type
with the number of levels equal to n, Eg. (4.168) becomes

() = N coshtP,. | (4.169)

fex1

n
Since Py > 0 and E]Pi=1,f the problem of determining the quan-
tities of the states A, and thelr probabilities by using the ekpres-
slon 18 congiderably more difficult. Therefore it appears possible
Lo use the followiﬁg procedure. Let the distribution of the random
frequency % be found from the condition (4.168), then by replacing
the continucus random variable with the discrete random variable

with a finite number of discrete states and with certain probabi-
lities of these states, as wWas i done above for the normal dis-
tribution of a random variable, we can satisfy Eq. (4.169) with a
gpeclfied error.

The representations of atmospheric perturbations considered
in Sectiong 4.2 - 4.6 essentially are the mathematical models
congtructed on the basis of the same statistical characteristics
of the atmospheric parameters we have considered. In additicn to
the different rate of convergence, the difference between them is
that if the canonical expressions (4.68) and the expressions in the
principal components (4.158) can be constructed for any of the set
ol the profile of the physical atmospheric parameter congidered,
then the profiles of physical atmospheric parameters modelled by
using the spectral expansions {canonical and noncanonical) are
selected randomly by means of the realizations of the above-indi-
cated random numbers.

The gelection of a particular mcdel for solving problems of

controlling the motion of flight vehicles in the dense atmospheric
layers must{be determined by the nature of the problem formulated.
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CHAPTER FIVE

S
=
\J1
(@]

|

STATISTICAL METHODS OF INVESTIGATING THE MOTION OF
FLIGHT VEHICLES IN DENSE ATMOSPHERIC LAYERS

5.1. Models of Nonlinear Control Processes

When designing automatic control systems of flight vehicles
moving in the earth's atmosphere, 1t becomes necessary to take
into consideration the effect of fluctuations in atmospheric para-
meters on the scatter of trajectories. Allowing for fluctuations
in the thermodynamic parameters of the atmosphere (density Ap,
wind w, temperature At, and pressure Ap), whilich are random
Tunctions, in the problems of the control of flight vehicles in
the earth's atmosphere can be based on methods of statistical
analysls and the synthesis of dynamic stochastic systems_developed
on the basis of the general theory of random functions /2, 5, 16,
17, 25, 26, 27, 38, 48/.

By flight vehicle control we mean the contrel of the motion
of its mass center and metion about the mass center.

Both the motion of the mass center of flight vehicles as
well as the motion about the mass center are' described by non-
linear differential eguations of the form

—_)_—‘:,;'F(X. U, £), X (8) =X (5-1)

where X is the n-dimensional vector of the phase coordinates of
the flight vehicles in the coordinate system selected; t is the
instantaneous time; {.1s the l&dimensional vector of the per-
fturbing actions, including functions characterizing the fluctuations
in the thermodynamic parameters of the atmosphere; XO ig the n-

dimensional vector of the initial conditions of phase coordinates;
and U 1s the r-dimensional vector of forces or moments controlling
flight vehicle motion.



Depending on the type of the flight vehicle, its function,
and its design and aerodynamic characteristics, one of the models
given in the studies /13, 79/ can be taken as the system of
equations (5.1)! TIn the introduction, equations (1) - (4) describe
the motion of the mass cenbter of a flight vehig¢le in the earth's
atmosphere.

Selection of a coordinate system in the form of mathematical
model of the process of the control of flight vehicle motion
usually 1s dictated by the goal of direct investigations. There- /154
fore, primary attention must be concentrated on sefting forth
the statistical methods of investigating processes described by
nonlinear stochastic egquations of the form (5.1).

Using the material from Chapter Four, we can examine five
forms in which the fluctuations of thermodynamic parameters of
the atmosphere obtained within the framework of correlation theory
can be represented /2, 60, 79/:

1) random functionS;!

2) canonical representations of random functions with
continuous random elements;

3) noncanonical representations of random functions with
continucus random elements:

4) canonical and noncanonlcal representations of random
functions with discreteé-continuous elements; and

5) representation of random functions by ftransformation of
white noise ug&ing shaping filters.

Here the canonical representations of fluctuations in thermo-
dynamic parameters of the atmosphere can be:

expansiong of random funections by elements obtained from
using the orthogonalization process (after Pugachev);

spectral expansions of random functions; and

expansions of random functions in eigenfunctions (method of
component analysis), and so on.

Dependdng on the kind of random function model used, different
models of the control process (5.1) can be constructed. 0Of interest
are the following models of control processes differing by methods
of statistical analysis:
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1. The general model of a stochastic process described by
the vector nonlinear differential equation {(5.1)3dn whlqh fluec-
tuations in atmospheric parameters are pandom functiors with
asslgned statistical characteristics ﬂ{h(f1,ﬁﬂhUJiTU)]\ , and
50 on.

2. The model of a stochastic process using representations
of random functions in the form of canonical or noncanonical
expansions with continuous random variables and described by the
vector nonlinear differential equation

—-‘f‘\:’.—._—,l-“(!, V, U, X), Xty =X, \ (5.2)
where V 1s the m-dimensional vector of noncorrelated contilnuous
random variables with an assigned law of distribution of probability
density.

3. A model of a stochastic process using representations of
random functions in the form of canonical or noncanonical expansions
with uncorrelated discrete]fandom variables and described by the
vector nonlinear differential equation

\—1(\'1(1 A), (‘,)_\’(.,J (5.3)

where A 1is the m—dlmen81onal vector of discra%e)random variables /155
with assigned distribution of discretetstate probabilities.

4, A model of a sfochastic process using The differential
model of the "whife"noise" filter ¢ (%) and described by the non-
linear differential equation

X =F(Xv t? '.:J(t), U)s A’(tu) =A’0*—’ (5-}4)
where ¢ (¥) 1is the s-dimensional "white noise" vector with a
zero-valued mathematical expectation M[wU)]:0\ and a specified
correlation funetion of the form

MUy )] = St —). |

Above the following notation was used: 3(t) is the matrix
of the spectral density of "white noise™ and 6(t --7) is the
delta=-Tunction.

In model (5.4), vector X includes also phase coordinates
of the "white noise'" fililter.

For each of the mathematical models (5.1) - (5.4), we must
examine the possible directions of the statistical analysis of
control processes for an assigned vector of contréls U defining
the control process.



One of the possible approaches te analyzing nonlinear sto-
chastic processes is the method of complete linearization of
nonlinear equations of the form (5.1) if linearization is possible,.
The idea of linearizatlon is based on the assumed, and usually
attainable smallness of the deviations from the reference process
realized by introducing control with respect toc the deviations.

Essentially, the méthod of complete linearization is as
follows. We can represent the solutions to differential eguation
(5.1) in the form

X5 =)?({)+AX_(!_)7,M (5.5)

where X' is the vector of the reference solutions of nonlinear
equations (5.1) obtailned by integrating the latter for ZEero per-
turbing actions £ (t) and assigned initial conditions X(my“AJ H
AX(t) 1s the vector of deviations of the solutions of the
perturbed system (5.1) from the reference solutions caused by
the presence in the right side of the equations (5.1) of pertur-
bations £(t).

By carrying out the complete linearization of equations (5.1),
we c¢an cobtain a linear model of the process of the form

AX = A(OYAX + C(8E(S), AX (L) = AX,, (5.6)

where A(t);-ﬂi

is a matrix of order (n, n) computed for the reference solutions
X(t) and characterizing the properties of the process;

. §F
C(f) = (Ji /

is a matrlx of order (n, 1) computed for the reference solutions /156
X(t) and characterizing the degree to which the perturbing actions
affect the process under study.

Eq. (5.6) 1s a linear model of the nonli#mnear process (5.1)
for a specified control U(X, t). In the linear model (5.6}, the
perturbation vector can be represented in any of the above~listed
methods of representing random functions.

Of Interest is the linear model for the process (5.1) if the
control 1z organized so as to reduce the numerical values of the
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vector of deviations AX{t) from the zeroc value. In this case,
the control vector can be represented in the form '

U(X, t)=U(f,E;?).| (5.7)
Then the linear model of process (5.1) has the following form:

AX = A(H)AX + B(HUAX, ) +-C(DE(8),

AX (t,) = AX,, (5.8)
B t} _ EE — e ——— --—- " =T T -
‘Wwhere ()= 37 |x is a matrix of order (n, r) characterizing the
effectiveness of the control actions U.

Linear models (5.6) and (5.8) are set -up on the assumptilon
that the vector of the reference controls ¥ is equal to zero. If
the vector of the reference controls U is not equal to zero, but
the control can berrepresented as the two summands

L UAX, 1) = U(6) + AU (L, AX), k | (5.9)

then the reference solution is usually obtained by solving the
nonlinear differential equations (5.1) for U = U(t), and the
model of process (5.8) 1s of the form:

AR = A() AKX + BO)AULC(8E(), |
AX (£) = AX,. ﬁ (5.10)

In practical applications, we are interested in the case of
control when the controlling function AU AX) 1s replaced by the
controlling function AU{u, AXH , that is, the process of forming
the control by vector AX(f) takes place with respect to a certain
function

Tp=ex UnD | (5.11)

which is a function of phase coordinates, controls, perturbations, -
and time,

This problem is examined in detail in /59/ for the case when
the function u depends on the phase coordinates of the process.
The use of measurements in the body-axes coordinate aystem leads
to the necessity of examining the control. processes in which the

argument of the control laction is determined, 1n addition, by
perturbations and contrel actions.

) The requirement of monotonicity is imposed on the function -~ /157
X, U, & ”]. Realizing control with respect to The functlon un
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means that the independent variable (time %) in differential
equation (5.1) must be replaced with another independent variable
(function u ). In this case the differential equatlon of process
(5.1) can be represented as

dX _FX UL X
& x5 X wo) 0;]

(5.12)

and the control process must be supplemented with a differential
equation for determining the instantaneous time of the process

df — 1 t zt- J
& = sweon LJ (5.13)

Carrying out the complete linearization of equations (5.12)
and (5.13), we get the linear model of the proceas in the following
form:

d&X "
T D(p)AX—i—P(p)AU I—Q(H)E + () A, \ (5.14)
AX (py) = AKXy, ]

Bl 2 (1) AX 3 () AU + 5 (p) 243 b ()4, (5.15)

At (%;-0) = Af,,
Jwhere |

(5.16)
are the matrices of the linearization coefflcients calculated
for the reference solutions of equations (5.1), when. X(ng) = XJ

It should be noted that J()=0U(ml , since the unperturbed
motion described by system (5.1) when 5(l) =

0 changes identically
both with respect to time as well as in coordinates u

The function u 1is called the parameter of the control process
/59/, equations (5.12) and (5.13) are called nonlinear parametric
equations,

and equations (5.14) and (5.15) are called linear
models of the nonlinear parametric equations.



Thiy

Introducing the matrices /158

(@) s=(5) 1= (5)

and the vector of order (n + 1)

V = (AX, At}; f

we can represent the system of equaﬁions‘(S.lu) and (5.15) in
vecteor form

2 = e (@ ¥ £ S(AU+ LIER)Y

¥ (po) = Yo
| (5.17)

Matrices (5.16) can be computed based on the above-presented
formulas, by first writing out equations (5.12) and (5.13) in
particular cases of parameter u. However, the linearization
process 1s a quite cumbersome procedure, therefore we must consider
the algorithm of searching for a relationship between matrices
D, P, Q h.d B v and 4 and the matrices of the linearization
coefficients A, B, arid C. To do thilsg, let us determine the partilal
derivatives of (5.16). Obviously,

d (F{ 1 T0F + . 9 T
D= ‘a““x“(T) _i.;?[‘a_x ¢ F ax]'
- Y
éd (F 1 [ aF - d¢
g A
d (F 1 [ oF 9
Q= (7)=wlwe-ra
a_i'(L__.Li?_
6X ? ?2 X
Bzotgz_Lﬁ“
oU ¢ 52 alf
91N _ 1oy
-+
@ (17 1 03
8=—'.—=ﬁ“.—r"-t,~
I ﬁt(?) @2 at
d [ F 1 [ &F - =
ot ¢ ¢ .r)t dt (5_18)

lAn algorithm was derlved 1n collaboratlion with¥Yu. B. Kornilov.



Since A“wﬂf B==§5 , and C::%?,F::%?, , equations (5.18) /159
will become: - —_
1 ‘ dp
p-+ [A?--fﬂa;\,—],
P [B@—_—F%—j,
4
1 - d3
Q=3 |co~F ],
=L {1‘@ _F"—f]
p
1 g 1 @
0= —-— =l B= —
¢ d ¢ ol

v L8 L _—/
T T e T T T e
v A (5.19)

Expressions (5.19) can be ftransformed if we use the total
derivative of the function ¢ in the form

- ) .
@—WX-%()UU{—&_EE“' & Fy

6.. i
4“00 U"% : R (5.20)

where U 1s the derivatlve of the reference contrel action T, &

is the derivative of the vector of the atmospheric perturbing
actions, which were taken into account in computing the reference
motion i(

Denoting éU)=gayé( q(% 5 We can represent expresseion (5.20)
in the form

. 05 ay o 253 e
@:_OTY‘F'{‘W**"*'}){Q""U}'/ (5.21)
To determine the matrices D, P, Q, n, < fi T\ » and 6., wWe
must compute in the general form. the partlal derivatives w & }

. axe T
%g. ﬁ’ 9 This can easily be done if we use the following rules

for obtaining partial derivatives of complex functions:

the derivative of scalar H with respect to a vector is the
vecbor-row

Ths
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dr ( da g e )
A g dxg T ax, 1

the derivative of a scalar product with respect to a vector
is the vector-row e

ih .'.'-dﬂ
S (a,0) = g (@*h) =a* G 16t |

a and b are columns, (da/dX and dB/dX”éréwﬁatriéégjj and

the second derivative of a scalar with respect to a vector
ils the matrix

f]

- dha d'q da Ty |
d'.x? dxdx, 77 dxdx,
fa _|_du_ da _a_
dXz 7} dxdxy il T daydx,
d*a da da
dxdx, dxdx ‘”i

Following these rules, we will have:

de OF

g_i = gﬁe*‘@xé’ﬁ?"‘ =a(c]fz§)(+
- +%§ }&M+?$+%%
35 £ axau+3§gg+g* guﬁ'{*aégg"‘ 'a*U‘*“a? aq"‘araU’
%=F* axa*”!‘g; 3f+gI*6Ur)“+0glgg+ *”-1-3?‘3’{4-:;65,
o OF dy OF . ds Oz

o =kt tax dt+t)U6t tarar t ()6tq+0“ dt+6t"'

These eXpressions were obftained by determining the partial
derivatives with respect to vectors X, U, EJ , and time t from

the first part of expression (5.20). They become congiderably
simplified if we consider that

d % _dg_ 0q_0g_01_
X TXT T oUT e T T

and introduce the notation

ag . . ()q._- | N BF

=& =8 G =a=de ot

/160



We get
% g ¥
ax =F5%+ aXA+g¢MM+W Mw+wuw

O¢ Luil
aU‘—F*o,wU+ B+g® au*+‘? aua-“‘orau’

da.p__ 0% de d%p &Py G
E = axmEt axCH e gt I Et s

| ’Q.~
. |-G

=?E)?F+a? 1+0U6tg+aa§gl+ aat‘?-l" fh-l-a?"9 (5.22)

Substituting expressions (5.21) and (5.22) into equations
(5.19), we get working formulas for computing the linearizatilon
coeff1c1ents of the nonlinear parametrlc equations (5.12) and
(5.13), by employing matrices A(t), B(¥), and C(t) of the linear
model (5.10), and the partial derivatives of the function ¢ with
respect to vectors X, U, ¢, and time t computed for the reference

solution X(%)..

This algorithm enables us, when model (5.10) is available, to
construct quite easily the 11near model (5.17) for any functlon i}
and given the presence of the reference solutlon X(t).

Let us examine several particular cases. If we consider
p= ¢(X U, ﬂ‘ formulas (5.22) become

o9 2 _O%
ax= %+ 5% x At 8 wox + c?tciX'

. O Py
Fe 6X0U+5X3+g’em+ 600 -

% _ W
o ax

ge o <
i

d%p

a’? a‘? a‘P + 0%
=oxsl Taxl T+ spe: &+ aua:g1+a_:2' (5.23)

For n=@(X, )|, formulas (5.22) are simplified as follows:

o7 . 0% Py
a_;P{ > + 5% A+
9 _ 6¢ o _ Oy
w=xB wT=x G
dp % s
BF—‘¢MHF4'0X ot (5.24)

|
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'I_-l

(w2}
Mo

s

Finally, when p=¢(X)} , we get

6!; drg 7S
dX Fko'«\ﬁ’l“c).k"‘11

' a=p

=% B
¥ g, dF - 6? fC.

= i
of HﬂVXH _‘__' - (5.25)

For example, substituting expreSSJ_ons {5.24) into equations
(5.19) with (?=,__F+0¢Jfor the parameter u=g(X, 5] , we get the

following working formulas:

el 4% g g 0y &y
D ("@“”ﬂ)z [A SHF+ A —Frr oA Fm{\}
X ot
1 i, ]
‘ P = QLF:-—&F—E'[B F“I"Ba?—“F{PB]
(ax W):

x—-———-—_..-.__l _dcp L d? a‘? :
Q dv-p) [C axF+C5 _FdXC];'
0 .

',

- 1 O . Op &% 39 11
L Z[BXF"*'I_E{ FLEF— F I

(0% . Op 0X0t
(axF +
- 1 = 0% | O
T TR Y FroxitoxA+ arax]
)
1 6:p
ﬁ_ 5] B
s o ayy ox B
(32 + a:)
- 1 iy
7 O—F—;- dg\? 6XC
axtt e
- _ 1 9% Oy
o= ( PO [d..m/ Fraxt+ azz]*
dt) (5.26)
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Relations (5.26) graphically show the simpliecity of trans-~ /163
formations from the linear model (5.10) to the linear model (5.17)
when implementing controls wilth respect to some parameter & , which
is a function of phase coordinates and time. Similar relations can
be written out also for the other forms of funetion u . Naturally,
the simplest relations (5.22) are obtained for a parameter of the
form p=g¢(X)] , since here

1 {4 9 O 4 _ppe 2o,
D=- F-.'[A“a‘x"F_FoxA FF ax=]-
(%) |
1 Ipoy % p).
T BWF—FE(B],
F L
(3% 7)
1 [~ d¢ o9 )
Q=75 CEX—F—FWC‘].
G
he—' _[rRF_rp2pl
S ax ! |
(%)
2 O oy
%= ach"[F ?3"2'(?+0XA]»
(% %)
1 e,
=Ty ox
(5%7)
‘1- dp .
T=- athzﬁC’
(5% )
\ Ly
B 2= e s
dy N aX
(7%7)

- (5.27)

To prepare for the statistical analysis of models (5.10) and
{(5.17), we must determine the structure of the control actions.

To do this, let us introduce into consideration a certain
system of observational [functions

Tl‘l (Xsf» U’E)v '!‘_»(X,t, U)E)v .oy 7}!¢(X1 f'[j'i)'o (5.28)
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each of which is computed for the reference sclution X(t) and is /164
equal to

Tte T ..T,"z;.]' (5.29)

Using the systems of functions (5.28) and (5.29), let us
compute the differences

5"]1"‘:"71‘—"’31. A*J;;—"-’?’*;?>, o A';jk...r;k-—-nkl (5.30)
and let us assume that the control AU is a function
AU (Amy, 87z, -+ B%)- \ o (5.31)
Linearizing expressiﬁns (5.31}), we get
e.u-_—GAn,] (5.32)
where(}_gfﬂ 1s the matrix of order (r, k) characterizing the

linear part of the control action.

For the vector Am , we can also obtain the linear representation
in the form

An:HY+AMU+Am- (5.33)

TRLY dd'q
where H=—5; N=—57;

(k, (n+ 1)), (¥, ), and (k, 1), respectively.

A4 Yare linearization matrices of orders

From expressions (5.32) and (5.33) we can obtain an expression
for the control actioqiin the form

=(E+GN)‘1[GHV+5MH'IJ (5.34)
Substituting Egq. (5.34) into Eq. (5. 17), we Wlll have
A(u) Y+C(:1)E(z*) (5.35)
where
A(p) =+ S(E—QN)'GH,
&(w) =L+ S(E—GNY'GM. (5.36)

Thus, the above-considered four nonlinear mathematical models
of the control process (5.1) - (5.4) can be supplemented with the
linear model (5.35), whose elements in’the'generaI“caséjare described
by relations (5.36).



Example 5.1.

Let us 1llustrate the foregoling with an illus-~ /165

trative example for a simplified mcdel of the motlon of the center
of mass of a flight vehicle in the earth's atmosphere, whose

equations are presented in /13, 79/.

Without considering the

earth's rotation, the simplified model of motion of the flight
vehicle mass center in the longitudinal plane Oxy (Fig. 5.1) is

of the form:

V‘,-:—-atcos(ﬁ—l—a)—?lsin (0 + 2} -—-—“:- g

x=Vg
),2—0151n(ﬂ—+—a)+1’1 COs (H-{-a)—- .:'yg;
)"—‘— Vy:
Ve(f) = Vy (%) =
y X (fg) = Xy} (fg) = ¥,
where the following notation is used:
v
r=R+h M= -
Vy
== arctg v—~; g = %81 = const;
Vi
X2 Vi VT
hz)'+1_.2j?_; V=t’Vx‘4‘Vys
V= Vcosl V==V sint;
D=1l MVl Fi=i, Meh) Vi
Cy (e, M) S
fole My = —go—1
c, (5, M)S
1 M) = —-—”‘-~+-——:

2t

a 1s the speed of sound;

p(h) is the den51ty of air; h

(5.1.1)

(5.1.2)

(513)
/166

is the flight altitude of the fllght vehicle over the earth ]

surface; Vw is the airspe?d of the flight vehicle;

radius of the earth.

and R is the

The functions wila Mj] and TJQTE

are determined by designn

and aerodynamic characteristics of the flight wvehicle.

The angle of attack of the flight vehicle is taken as the
control action.
bations:

deviation of atmospheric density p(h) from the standard
atmospheric parameters

Let us consider the following by way of pertur-
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Fig. 5.1. Coordinate System

MUGﬂMM—WWM\
deviation of the function 1‘0 from the calculated i)

Ayg== Yu“-‘;a: I

deviation of the function Y1 from the calculated ﬁ'l

' Ay = 1T~ l

The é&ffect of wind perturbations is not taken into account
below for methodological considerations, therelfore VW = V.

Let the reference control‘ﬁﬁ%=§ml be speclified from considera-
tions of the movement of flight vehicle from a point with coor-
dinates (xo, yo) to a point with coordinates (xh, yh) and let the

reference solution of equations (5.1.1) be obtained given the
initial conditions (5.1.2). Linearizing the eguations of motion
(5.1.1) relative to the reference motions V_(t), x(t), Vy(t), y(t),

we getithe linear model of the process in the {orm

Ax = AV 4
AV y = ayAV ; + dughx + adVy + @by + bado + cndp + el + sy
Ay = AV, , (5.1.4)



Introducing the notation

Ax=(AV,, 8x, AV, 8y);, AU = A
* = (Ap, 8%, A7a);

@y @y @1y Ay by
1 0 0 0 0
A= . ' B= [
a3 3 Qa3 da, bs
a 0 1 0 0
€y €z O3
0 0 0
C =
- Cy Cag Ca3

O 0 0

we can represent Eq. (5.1.4) in vector form

AX;MXfMU+Mi| (5.1.5)

Let us define the control action AU in the form
M7 - RAV 4 RpAx -k B3V, | Ry, L
or in the vector form ’ S /167
AU = K*SX, l (5.1.6)
where )
K* : (#; kn_A’a LA \

Substituting Eq. (5.1.6) into Egq. (5.1.5), we get

AX =(A+ BK®) 3X + C4| (5-lf17

The procegs of settlng up a llnear model for the contrel of the
motion of the flight vehicle masds center can conclude at this
polnt.

Example 5.2. Using the results obftalned in example 5.1, let
us construct a linear parametric model if the paramefter is assigned
in the form

1 = g X (g == const). | (5 .2.1)
Using Egs. (5.27), let us find the relatlions for calculating the

parameters of matrices D, P, Q, h, B, ¥ , and § of model (5.14)
and (5.15). Since

) T g -
\ 9% (0w 0 0)
T3 == (0 % 0 0

¥ _g 9 o 99 __q 9F_

=% =0 =0 =N

o= (030,3),
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then the linear model {(5.14) and (5.15) can be constructed

on the formulas:

r b ki i P
D_( ;)?[A'B_F"Fﬁ“)?‘q' .
g ;
i dy o
P= SLFp_fpl%
(LTPMJ Fox Bl
vo
-1 d¢ 9% .
YaX/ :
L AT ) 1 R
a_( ;)”ﬂ'—‘ﬂ‘ "—_( —aEy & T=""‘"‘“_—§‘5:\;C: =3 .0,
At \%r) (%})
Considering that

9% g
;j'f;\;f'-—”ox'

0 v V0 0

£ 0 wx 00
ax = .

0 oy VyO 0

L 0w Yoo

using expressions (5.2.2) we get-

- /Continued on following page/

iz €33
Yo X \10}

0 90

€12 O '
VpX YpX

0 0

based

(5.2.2)

(5.2.3)



o:::.(-wlTO 0 0);
- Vn; (5.2-3)
B=v=0. iCont. )

Eqs. {(5.2.3) show the conslderable simplicity in setting up
a linear model of the process (5.1%4) and (5.15) by using relations

(5.27). Summing up the foregoing, let us write out the matrilces
€, S, and L, for the linear model of a paramefric system:
_3000

S=(p 0 p00);

— \
i Tz s
0 0 9 i
L= gy 9n g9» . f
}
} 4 ;

Fdy du du dy

0o 0 0 0

E=| dy dy dp Oy
dqy 0 ds 0

oS0 O o

00 o,
0 0

(5.2.4)

Introducing the notation /169
VHE{AVXAxAVyAyAn,}

we can write out the equation of the linear model (5.14) and (5.15)
in the form

Y’ m Y 7SAU - LE,
eb e eft s | (5.2.5)

Substituting the control AU
Aumkﬁvx}kgk{kgvy+kgy+}¢f (5.2.6)
or du = X*Y, where K¥* = (kl.k2 k3 ku k5), in Eq. (5.2.5) we get
yﬁ;@;éknY+¢a} (5.2.7)
Thus, the procedure of constructing a linear model for the

control process assuming parameter (5.2.1) is completed. We note
that in Eg. (5.2.6) the coelfficient kg = 0, since the differential

equation for the coordinateld x 1in Eg. (5.2.7) 1s absent (all
linearization coefficlents in the second row are identically egual
to zero).
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Py b1

a5k
+ teas
a0

. aost

-

]
-0,05

- ‘
: 3
©egral -a00-
Fig. 5.2. Linearizatilon Fig. 5.3. Linearization
coefficients all(t) and coefficients bl(t) and
dyq (W) p, (W)

Figg. 5.2-5.14 show the variation in several coefficients
aij and dij’ bi’ and Py as functions of arguments t and U

These results characterlze the variation in the dynamic charac-
teristics of the control object in passing from one control
argument t to the other argument¥§éx.

Constructing the lineagr model for nonlinear parametric systems
with the more complex dependence of parameter ¥ on phase states
VX, X, V_, and y also does not occasion serious difficulties.

At this point, the examination of models of control processes /170
can be cencluded and we can proceed to considering methods of the
statistical analysis of processes for controlling the motion of
5 flight vehicle in dense atmospheric layers. By the problem of
the statistical analysis of control processes we will mean the
problem of calculating the mathematical expectations of solutions
of Egs. (5.1) — (5.4), (5.35), and correlation matrices of the

solubions

Ryex () = MIX (1) X* ()] |
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or the statistical characteristics (mathematical expectations and
correlation matrices) of several functions of the solutions fo the

nonlinear stochastic equations.

datit) T
@it} 5.2. Statistical Analysis of Non-
" 1linear Systems Based on a Linear
Approximation
goozbipr e
Let us write out the solution
to Eg. (5.35) for the linear model
of a control process in the Cauchy
form
Qoo -gsra
V(p) = @) Yot 2@} |97 () COEMRIE | o any
gk

We assumetthat the matrix of

; the initlal-condition correlations
Fig. 5.4. Linearization

Coefficients a.,-{t) and ' o
: 12 _&AM=%:MPﬁﬂ_

_ dyp(u)

arid the correlation matrix of the
perturbling actlons -- fluctuations of the atmosgpheric parameters

Re(£,) = MIE() 8 (). |
are given.

Let us find the correlation matrix of the solution 3
Ry, (3, p) = MY () Y (»}], J

by using the solution of equation (5.35) in the form (5.37).
Assuming that the statistical interrelationship between the

initlal-condition vector YO and the perturbation vector £ (U) is
absent, we will have

"o

Ryy (1) = B (1) Ry % () + | | D) @7 '(8) X

Po P

X EO R ()07 Q) D () dt . (5.40

(5.38)

(5.39)

/171

)
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In Eags. (5.37) and (5.40), the matrix ¢ (t) isla fundamental
matrix of the solutions of the differential equation (5.35)

), fI)(tu)=E.| (5.51)

Computing the correlation matrix R@*ﬁ@ﬂf by employing
expression (5.40) involves several difficultles, nameldy: prelimi-
nary integration of equation (5.41), necessary computations under
the sign of the integrals in Egq. (5.40), and computation of the
double integral of the function of two variables. The computational
difficulties are considerably diminished if we use different repre-
sentations of the random functilon.

Let us examine several particular cases. For the canonical
representations of atmospherlc perturbations taken in the form

z(t)=6‘(t)V,J (5.42)

where ©(t) is the coordilnate-function matrix and V 1is the m-
dimensional vector of random variables with normal distribution
of probability density and with the assigned characteristics

M[V]=0; MVV*=R o

Vi
Eq. (5.40) can be transformed to become

o
Ryy(2) = @ () Ry®* (u) + § [ @ () v (1) Bty 0 (H) R, ><i]

[in thn
T

X8 () C2 () [07 ()" 0 () it v, 1 (5.43)

In appearance, Egq. (5.43) is not simple# compared with the earlier- /172
derived solution (5.40). However, after uncomplicated trans-
formations, which yield the expression

Ry, (p)=0 (l;)-é;tri* (r) + f B (p) @ () C(2) B (£)dE X

]

s R 1B () E5 () [0 ()]* 0% () s,
ui (5 C* () | ]* @5 () 5.

its simplicity becomes evident.

Introducing the notation
Hp)=fo@ae ) C (o (na,
a4
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we get for (5.44) the following representation:

Ryy () = ® (#) Ro ©* (1) + H () Ryy H* (1) (5.45)

Eq. (5.45) can be used in computing the matrix .Ryyﬂﬂv)
both with the continuous vector V as well as with 1ts discrete
representation.

e )

If the vector £(t) is "white noise," theh by substituting intﬁj

Eq. (5.40) the correlation function .of nerturbation in the

o b i el — (5.46)
REE(t,'r)=S(t)3(t—--:)'
we can get . T e e
k,,.y (o) = © () R, ®* () + § § @)@ C(B) X
% § ()5t — ) C* () [07()] "O* () dtde =
G RO () + | e@e () EBSHT (B dt. |
B o ’j" : (5.47)

Noncanonical representations of random functions do not
simplify the calculation scheme (5.40) for computing the required
characteristics.

Using relations (5.40), (5.45), and (5.47) involves gquite a
cumbersome computational process, since we need to integrate
twice: first, to compute the fundamental matrix of soluftions
¢ (u) , and second to determine the component of vector Y caused
by the action of atmospheric perturbations. Therefore, in actual
statistical analysis of linear systems use is made of correlation
equations relating the matrix Ryyﬂa}g| with the matrices Ro and

R (69)

Denoting
.J;=éh0500,l
let us write Egq. (5.35) in the form'
Cr=A@ Y. | (5.48)

We can easily show that for an¥ andom vector—function@w(ﬂ)
that exhibits all the derivatives y(K the following correlation
system of differential equations corresponding to Eg.. (5.48) is
valld:

~
[..._l
—1
(8]

|
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Ryy= ARy, + Ry A*+ R, + R},
Ry, =ARy,+ R, + Ry,
Ry, =AR,,. + R, + Ry,
Ryp = ARy + Ry + Ryye

---------------------

with the initilal conditions

Ryy(p‘ﬂ):Ro; (5-]49)
Ry, (m) = Ry, (1) =...= qu,m (o) = 0. ‘ (5.50)

The system of equations (5.49) associates correlation matrices
of the output characteristics of process Y with the correlation
matrices of perturbations RQPJRW, .. ngﬂ and the matrix of the

system A under investigation. In the general case, it 1s virtually
impossible to use system (5.49) 1n view of its 1nf1n1tude If it
turns out that the solution RnﬂHﬂf is identically equal to zero,

then the system of equations (5.49) will be a finite system of
correlational differential equations. This system of equations
can be used in the statistical analysis of a process based on the
linear approximation, that is, based on linear model (5.35).

Note that in deriving system (5.49) use was made of the
following transformatlons

R, _Aq[d (YV*] M[Y}’*-;-YY*']:

= M{(AY 4+ $)Y*+ ¥V (AY 4+ 4)*] =
=AR”+R”ﬁﬂ+mw+Rw,

Rm~ﬂ4[ Yf] MYy V¥ | =
= MUAY +9) 4% +Y4*') = ARy, + Ry, + Ry,
and so on. /171

Let us examine the possibility of cobtaining an estimate of

the term R, M+” To do this, we obtain a system of differential

equations (5 49) by using the solution to Eq. (5.48) in the form ;



(5.40), after first representing 1t in the form
! o

Ry (1) = ()} Ry2* (p) + [ { ® ()0~ (£) x

o o

X R f,‘ (_Il_l #* e Ndfd
or in the form _ v ( f)[ ()] :;(P) T

Ryp (,8) = © () 1 (1) * (), / (5.51)
where o ' |
: po ‘ .
r(m==Rm+fjdr1u)Rw(aq[m*%qkdfmn{ (5.52)
ol

Differentiating Eq.r(5;51), we get
Ryp (8) = @ () 7 (1) @* (1) 4 © () 1" (1) D% (o) + © (1) 7 () B ()}

Since

0 = A0, (D)% = @*A*»{

we will have

' T R
R_r}’ (v) = ARY}’T{FR}’}’A* + ®{p) ¢ (n) D* (l’zy (5.53)
R R [
Introducing the notation

[
"

2(ne) = | R, (1) [0 ) ),

e

let us represent Egq. (5.52) in the following form:

1) = Rot [0 )4 (5 )

and let us differentiate it in the independent wvariable

1 T
, Q- ) | _
7w} = 5 7' (x) 5;: sl pydi+ 0 (W) (= rw)-\

thy

Since - ' /175

Gy @ F, e
A = 5 R [T 0] = Ry, () [@“(w]“q -
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the expression for the derivative of function Y(H) is of the form:

i

V) = ¥R R, (sp)dx [0 ()] +

3]

+ o7 jfew(m[ OIS

Substituting thls equallty into Eq. (5.53), we will have the
following integro+differential eguation:

il

Ryy(p) = AR.}’Y—I_R}’YA"‘&: +® (E‘)j 7' (z) Ry (3, 1) d‘;ﬁ

+ f Ry, (1,%) [271 (0)]" d= @* (). (
A | : (5.54)

We introduce the notation

V(P)=_Y¢(P)¢h‘(T)R¢¢Cap)d;:7 (5.55)

It
Given the condition that

o |

v (p) = jR’*.r (5 ) [T ()] d= @ (), {
FEq. (5.54) takes on the follow1ng form 7
R,y = ARy + Ryp A% v (p) -+ v* (p). ( (5.56)
The quantity Y(ﬁ) is a matrix of order (n, n).

Differentiating Eq. (5.55) with respect to parameter of ﬁ s
we will have

f(.,.) Av(p)y+ Ryy (1) + v (n),
where

vi (1) = b (p) Y Q! (3) -

e

eh (t' w) =, (5 Y )

Continuing this process of transformations, we get an /L7686
infinite system of equations characterizing the correlational
transformations
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Ryp = 71'1?, ph Ry A% 49 () + " (p):

¥ (P‘) A(P’) (”‘)+R¢¢ ('t")'i‘vl (]"‘)9
v (1) = A () v () + Ry () + v (05
v, (p) =4 () ": () + Ryyn() + va (1)

ooooooooooooooooooooo

k(!—'-)'— E")vk(["‘)+Ryy(k)+vk+l’ (5-58)

Where

o (8) = S@(p)@“( ym{o () L2y ]a

By form, the systems of dlfferential equations (5.49) and
(5.58) coincide, therefore we can write

Ryysen(#) =Yp = S I’(P) ‘I)-l(t)M[?(T) —qJ(P)] . (5.59)

Eq. (5.59) enables us to estlmate the magnltude of matrix RYM“*U[
if we use the data on the numerlcal characteristics of the
matrix o . S

{‘P( ) q‘(l ] =R¢.{,(k) (T,H).

Let us now determine expressions for ﬂ4H{g)¢?(pr . To-do
this, let us find the derivative of the product

;,%¢(»)qa'(»)=¢'<p)~p*(p)+-1.»(w*(u)-) (5.60)

We use the operation of mathematical expectation on the
equality (5.60), here considering that the operations of mathe-
matical expectationsand differentiation are permutatable. We get

TR, (1) = Rypet R.j,...:}

Obviously,

- .
Ry =5 Rov (5.61)
Now let us determine the second derivative of the product Ay

YpE .

r-—.;‘;_. q),b's 5 ':Jn‘%‘-ﬁ» + 2,%,!,;,' + l}“.})".]
» .
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After the averaging operation, we will have.

- Riyge = MUY+ M[pp"*] + 2M @s
MYV} =Ry y = Rypo 'j

we get — : o ‘

Since

b Ry=2M"¥ )+ 2Ry
hence 1%t follows that

T
Ryp=—5 Ry, (5.62)

Continuing thése transformations, we can easily obtain

‘_ Rwﬁf’i’_@ | (5.63)

On analogy, we can find expressions of the form (5.61) -

(5.63) also for R, -

The statisftical analysls of fluctuations in atmospheric
fhermodynamic characteristics enabled us to make an estimate of
the variables Twa\ wa’}ﬂ¢4 , and. so on.

It turned out:that
Ry K Ry KRy, /

Therefore, for control processes 1n the atmosphere we can assume
that

Rw,z}?wuz =Ry =0,

Accordingly, a system of correlational equations (5.58) becomes
considerably simplified and takes on the form:

Ry () = A Ryy () + Ry () A () - ¥ (8) - v* ()
| Y () = A (1) + Ry, (w).

This is valid also for the system of equations (5.89). Therefore
we will have

Ryy(n) = A(p) Ryy (1) + Ry () A (p) + Ry, (0) + Ry, (0); J
Ry () = A) Ry, (1) + R, (u); f |

Ryyp(za) = Ryt Ry (1ty) = 0. (5.64)



Therefore, we arrive at fairly simple differential equations which /178
are highly convenient for the statistical analysis of control

processes of flight vehicle motion in the aimosphere based on the
linear model (5.35).

In the particular case when the perturbation is "white noise™
with characteristic (5.46), from Egqs. (5.64) there follows the
familiar correlation equation

Ry (1) = A" () Ryy (0} + Ryy (1) A% (1) + S ().

The results of investigation the linear model (5.35) can be used
as the first approximation in investigating nonlinear stochastic
differential equations (%.1) of the control process.

Example 5.3. For the linear model (5.1.7) of fthe control
process (5.1.5), given the numerical values of the coefficlents

of the control algorithm (5.1.6) equal to k, = -0.000418, k, =
=—0., 000576, k3 = =0.000633, and ku = -0.000295, the numerical

integration of the correlation system of equations 1s carried out:

Ryy=2A0 R,%x + RyxA* (1) + Ryz + Rz,

léxs% A + TRyl
’ o S (5.3.1)

where
: i
Mvy MVl MV, MVl

eo_| MWe MEel MV Ml
3 MVl MIVea]  M[VI MV
MV, M[xy] MVl My

MIV.E) MV MV G
Mxg]  M[x5] M [x&]
MIV &1 MV E] MV &)
Mye] Myl  MIy&]

ME MBS M
Ru=| MEL M]E] MG |

M%) MUs M[4

Rye=

r

4 0 0 0
0o 90
a0 40
0 0 O

A= A+ BK* Ry{0)==
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-coﬁﬁ%ol o for the time argument of

Figs. 5.5 - 5.7 give the graphs of the root mean-square /179

vqlues of the coordinates X,‘y,.VX, and Vy, contrel o, and

no¥malized valuss of the reciprocal moments

- MWﬂl’,_MWNJmﬂ;

| {’m = va"y ] 14 ——UV_‘,GV; H

MV 4x] MV )
rla - g .3 ’ = [+ T -— *
Vx * V.V v

M [Xy] A’IlVy.X] .

t EySy * Ty '
(T

Analysis of the results of the numerical integration of the
correlation system of equations gives a fairly complete represen-
tation of the control process (5.1.7).

o Thus, from Fig. 5.5 we
Ga TG ’ . can determine the time intervals
oy B T\} when the phase coordinates of

' the process have thelr greatest
scatter, andjalso we can esti-
| mate at any instant of time

XYy O'y

600} o within the framework of corre-
® lation theory the possible
2000+ scatter of phase coordinates
and ¢f the control.
04+ 4001~

Fig. 5.6 enables us to
establish a correlation hetween
 the phase cocordinates and shows
1000 : - that a near-functional relation-
a2t o0l - ship exists between coordinates
' x and y. The explanation of
this fact lies in the structure
of the control algorithm (5.1.6).

Ty

Example 5.4, Similar
calculations were carried out
Fig. 5.5. Root mean square values for the linear parametric model
of the coordinates y, V V., and (5.1.7) of the control process.

J Figs., 5.7 and 5.8 give the
graphs of the root mean square
values of the coordinates t, ¥y,
v Vy, control af, and normalized

L L I 1 t i
0 o= ¢ by 20 3 w0 ot |

X’
the program (¢ = t)
X’

values of the reciprocal moment r. when only the deviations of the
initial conditions AXO are in effect.
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- |
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Fig. 5.6. Normalized values of reciprocal
moments for the time argument of the pro-
gram (¢ = t©)

Figs. 5.9 and 5.10 present similar results for zero initial /183
conditions and when only external atmospheric pérturbations are
in effect. Plg. 5.11 illustrates the results of the effect on
the control process of deviations from the initial conditions
and external perturbations.

A comparison of the results of 1nvestigating linear models
under the time and parametric form of specifying the argument u
enables us to establish the considerable effect that the form of
the argument has on the scatter of phase coordinates of the control
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_Fig. 5.7. Root mean square values of Fig. 5.8. Normalized values

the coordlnates t, Vx’ Vy, v, and con- of reciprocal moments given
i)

trol @ for the parametric argument Ehe parametric argument ¢ =
¢= 0.000298x caused by scatter of = 0.000298x caused by scatter
; s s . of the initial conditions.
the initial conditions
process. Thus, when u= t,.the root mean square value of the  ¥:“}
coordinate ¥ isg ﬂy'? 3000 m, while when u= vOX, this wvalue is |

Uy = 1000 m. Here, the maximum value of ¢ _ is shifted with respect
to the argument to the beginning of the control process (whenl& =

=- vox) compared with the time argument. These illustrative

examples graphically show the effectiveness of the correlatilional
ahalysis of nonlinear sysftems based on Tthe linear model.

5.3. " Methods of Statistical Investigation of Nonlinear Processes

When examining methods of tThe statistical analysls of control
processes describedeby nonlinear stochastic differential equations,
a problem of considerable importance is the selection and validation
of the corresponding model of the process. Mathematical models of
the processes (5.1) and (5.4) are structurally quite close, since /184
in both mathematical models the right side of differentlal equations
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Fig. 5.9. Root mean square values
of the coordinates t, y, sz Vy, and
-4.8
control o for the parametric argu- s
ment ¢ = 0.000298x caused by the | | [ i
action of atmospheric perturbations ¥ ] 0 0 “0 30
Fig. 5.10. DNormalized values

(5.1) and. (5.4) is descrlbed by of the reciprocal moments for

a continuous random process & (%) Ehe parametric argument. | ¢ ?" [
or VY (t) with assigned statis- = 0.000298x ' caused by the, .-
tical characteristics. Naturally, action Of‘gzggzggerlc pertur-

two approaches of l1nvestigating
processes described by models (5.1)
and (5.4) suggest themselves. The \
first involves correlational transformations, as was done for

the linear model of process (5.35), and constructing a sysb@m of
correlational nonlinear differential eguations linking correlation
matrices of solutions RXX(t,t), correlational matrlces of pertur-

f.ﬂl, and the matrix of initial-condition correlations
the solution of this problem in particular cases of

bations Ry (
RO.
nonlinear processes invelves infinite systems of differential

equations and the necessity of computing the moments of solutions

of high order 1HIX”’U)X”N n“ » where k, p > 1 are positive |integers.

Correlational transformations of nonlinear systems is a quite com-
plicated process and essentially they do not find wide use in the
actual practice of investigating nonlinear stochastic processes of
the control of flight vehicle motion.

However,
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G| Oy T Ty

gy The second approach
to the statlstical inves- -
00 ot Oy ¥ tigatlon of processes

[~ : desecribed by models (5.1)
and (5.4) is associated
2 | 200p [ with approximate methods
8001 of computation based on
Oy . the techniques of mathe-
= - _ matical statistics.
“G0}- e In beginning to expound
- | ook on the problems involved in
applyinggthe apparatus of
200} mathematical statistics to
= - \ the statistical investigations
of nonlinear stochastic
L processes, we introduce a

¢

L L , .
-0 70 7 26 W0 oo set @, of elements, which we

— will call sampling or random
Flg. 5.11. Root mean square values peints. We will regard a

of the phase coordlinates t, y, V sampling point as the possible
outecome of an experiment
conducted with a given set

X’
Vy, and control ¢ for the parametric

argument ¢ = 0.000298x caused by of conditions (random pertur-

scatter of the initial conditions bations). As applied to

and by the action of external per-. this particular problem of
turbations. analysis, by an experiment

we will mean the integration

of differential equations for
specified realizations of random perturbations ¥ (€) or £ (t) in the
mathematical models (5.1) or (5.4). Let us assume that as a result
of conducting N experiments {(integrations of Egs. (5.1) employing
analog, digital, or hybrid computers) for realization of the random
perturbations

@y, e, .. e""’m? (5.65)
we get a set QZ of reallzations of the solutions to equations

(5.1)

M W
X0, x x| (5.66)

Since the sequence of realizations of perturbations (5.65) is
s random sample, the sequence of solutions (5.66) 1s also a random
gample.

From the elements of sample (5.66) let us compose the sample

I ? (5.67)

A
i



~
l_l
[oe)
1

and let us examine several statistics of the sample:

the sample mean value

(i)

1
N ; (5.68)

133

b=

TEs:

the sample dispersion

N

f= e B3 (5.69)

If the laws of the distribution of the elements of sample
(5.67) are ldentical, and the elements of sample as such are
independent random variables, then we know /31/ that

Mzl =p; | (5.70)
A= m{E—wr]= =, (5.71)

where g, is the root mean square value of the random variable
z and H, is the mathematical expectation of this variable.
Similar formulas can be written out for the sampling dispersion:

M) =% (5.72)
. s N—1y+2
M) = 5+ Sy (5.73)
N—3
ﬁ(S%==7%(P4“'3T:T)°§' (5.74)

Egs. (5.70) and (5.72) mean that the sample mean z and the
sample dispersion s are unbilased estimates for the mathematical
expectation and the dispersions of random variable z with mathe-
mathical expectationu  is the dispersion of .0} and the Ffourth

central moment “M' Dispersions of the sample mean z and the
sample dispersion can be computed by Eqs. (5.71) and (5.74).

Using Egs. (5.68) and (5.69), we can compute the mean sample
values and the sample dispersion, and by formula

. N
\a;= NE.L;;(xm—‘EJ(XM“‘QB_] (5.75)

L

also the elements of the sample dn@rhﬂme[matrix.of solutions to
nonlinear differential equations (5.1) represented in the sample

(5.66).
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In estimating the characteristics of scatter the mean sample
value and the sample dispersion obtalned by Egs. (5.71) and (5.74),
difficulties arise, since the characteristics of the random variable - 5
Z,hamely ¢ and 1ﬂ are not known. If the random variable 2z has a ~ /186

normal distribution, then Egs. (5.71) - (5:74) are of the form:

— o o 254 -
Rl = F LS =T / (5.76)
If we use the sample value of théuaigbersion 32 Instead of

2

07, then from Egs. (5.76) there follow the formulag

- 52 T 2(s7P
S EE R O Ni—i'] (5.77)

Egs. (5.770) can be used in estimating the characteristics of
the scatter of fthese statistics or in planning a number of experi-~
ments (N) for calculating statistics with specified precision.

The process of the statistical analysis that uses as its
basis the theory of the sampling method of mathematical statistics
and assuming the construction of sample (5.66) is called the
method of statistical tests. This method is guite often used
in problems of analyzing the scatter of nonlinear systems.

The method of statistical tests can be used also in analyzing
a control process utilizing the mathematical model (5.2). Here
the process of obtaining the sample (5.66) is considerably
simplified, since constructing the sample of random variables V

v, ve, L v‘“”\. (5.78)

instead of sampling the realizations of random functlons (5.65)
to a large extent simplifies the applied aspect of the investi-
gation, since the formation of realizatiocns of the random-variable
vector with specified distribution of probability density fO(V)

can be done by using standard programs of random numbers on
digital computers.

For the remainder, the procedure of the method of statistical
tests for mathematical model (5.2) remains the same as for mathe-
matical model (5.1) and (5.4).

In conclusion, we present formulas for computing estimates
of the statistical characteristics of =clutions to nonlinear
equations (5.1), (5.2), and (5.4) utilizing the method of statis-
£tlcal tests:



M[X]~= ‘;X“’ (X)p:

N

MlXX*] e 2 XOXW = (XX, (5.79)
~

When eomputers are used, 1n plaee'of Eq. (5.79) for inter-
preting the results of ecaleculations involved in constructing
the sequence (5.66), we can organize an ongoing processing if /
we use recursiocon relatlons in computing the estlmates (X) and

(XK&)N for the statistical characteristics NHX] AHX\Q

— Nl I iy,
(R = i e 7 X0

2:

(XX")(“’

(XX?)y = (XX%M r+N R (5.80)

In Egs. (5.80), expressions (X)N 1 and (XX*% )N 1 denote the

estimates MIX1] ang rM{XX]% obtained in the preceding experiment
involving the method of statistical tests.

In discussing the application of statistical tests to problems
in the statistical analysis of nonlinear differential equations,
we must_consider the question of the convergence of estimates
(X (XX*) to the real characteristics ﬁﬂX]jw[kx*ﬂ and the

precision of computing the sample means (X) and the sample
covariance imatrix (XX*).  In /797 are presented working formulas

for determining the required velume of the sample (5.67) on the
condition that a specified precision of computing the mathematical
expectation of the random variable obtained by utilizing the
Chebyshev 1lnequality and the Lyapunov limit thaxemiis achieved.

Table 5.1 gives the values of the number of elements of
sample (5.67) as a funetion of the number € characterizing the
range of error in computing the mathematical expectation of the
quantity

for a specified probabllity P = 0.99 that inequality a\<f? has
been satisfied:

TABLE 5 1 o
e . 00b L0050 02
Ny, . ... 100000 . 4000 1000 250
Ne ... 100001-’ 400 100 25
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In Table 5.1, the number:Nl is obtained from the Chebyshev

inequalityé\and the number N, 1s obtalned by using the Lyapunov

2.
1imit theorem. | The Chebyshev inequality

. i
Py o] < g

gives a very rough estimate of the error of variable @N' The
estimate obtained by using the Lyapunov 1limit therum

Py s~ w(3)/ E,)J

i

gives a more exact estimate of the error GTN'

Therefore, when calculating the volume of the sample (5.67), /188
we must use the second row of Table 5.1.

When assigning the volume of sample (5.67), we can also use
Egs, (5.71) and (5.74).

From Table 5.1 it follows that to ensure high precision of
computing the estimates (X)N, (XX%%N utilizing the method of

statistical tests requires multiple integration of the system

of nohlinear differential equations (5.1) in order to arrive at
sample (5.66) of high order. Accordingly, it 1s necessary to
examine other approximate methods of the statistical analysis of
nonlinear processes.

This possibility appears only for the model of a control
process described by differential equations of the form (5.2),
in which the random functions are represented by canonical or
noncanonleal expansions.

In the method of statistical tests, for the model of process
(5.2) there are no hypotheses on the structure of the solutionsg
of an equation in random variables V, and therefore the volume
of sample (5.78) of the realizations of vector V, and this means
also the volume of the sample of solutions (5.66), for a specified
precision of the computations of the statistical characteristics,
can be gquite large (Table 5.1). Obviously, the use of a prioei
information on the nature of the relationship between the solutions
of equation (5.2) and the elements of the random vector V of the
form

——— e —— —_

Xt V)= 2 (V)] (5.81)

can slgnificantly cut down the volume of computations in deter-
mining the statistical characteristics of function $(V). At the
present time several techniques have been developed based on various
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hypotheses on the nature of the relation (5.81). The principal
of these is the method of complete linearization, the method

of statistical linearization /I9/, the method of partilal linear-
ization /32/ the method of incomplete linearization, the B. G.
Dostupov method /197, the interpolational method of V. I. Cher-
netskiy /79/ the method using the technique of least sgquares,
and the method of statistical nodes.

Let us examine the computational aspects of several of these
methods.

The method of complete linearization is based on the hypothesis
that the relation (5.81) is linear. The main. relations in the
method of complete linearization have been examined in Section 5.2.
Use of the method of complete linearization requires the direct
linearization of the nonlinear equations{5.2). In several cases)
direct linearization of nonlinear equations (5.2) is impossible
by virtue of the fact that the control AU is of a relay type,
or for other reasons. Then, by using the hypothesis of the
linear dependence of function ¢{V),on random variables V, we can
write the following working formula:

N

(VE)—o (V =0

= - ‘Vi_w”ﬁﬁ_____
| e (V) =V U)qu o U, (5.82)
where v? is the realization of element vy of vector V in the /189

computation of function & (V).

Eq. (5.82) can in several cases prove preferable to relations
in the method of direct linearization of equations (5. 2), since
here there is no need for a direct linearization of nonlinear
equations (5.2}.

Introducing the notation

p _ 2{vl) ~¢(V'=0)
1= vp
‘ i

and using Eq. (5.82), let us calculate working relations for
determining the mathematical expectationsand the dispersion of
function ¢ (V):

Mo (V)] = ¢ (V =0) (5.83)

@ e (V)] = 2 615°[v].
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BEgs. (5.83) are written on the assumption that there is no
correlation between the elements of vector V and these formulas
are'quite'simple;

" Method of 1ncomplete }linearizatlon It i can turn out that the
function (V) is associated with the random-factor vector by
the function /36/

(Vymuv 0}+Ci+mdm {5.84)

where-;ﬁis the vector of strongly varying random factors V not
admitting of linearization of equations (5.2); and A is a vector
of weakly changing random factors V admitting of linearization of

equations (5.2).

Naturally, here the sum of the orders of vectors w and A
is equal to the order of vector V.

Using relation (5.84), we can easily obtain working formulas
f?r)computing the statistical characteristics of the functicn
b LV): ,
MUz (V)] = 9 (V = 0) + Mg, (@)]; {
19 (V)] = C*R,,C + M 51 (w0)} — (M [z ()]
RM = MJAAF].

——

(5.85)

By analyzing the working formulas (5.85), we can note that
in the absence of a gorrelation between elements of vectors w
and !, to determine M[e{V) )]} and Uqw(V)H , we must investigate
the nonlinear stochastic system subjected to the random factor
W , whose order is less than the order of the complete vector V,
and we must investigate the linear system perturbed by vector A,
which can sighificantly reduce the volume of calculations when
statistical characteristics of the function ¢ (V) are being
determined.

Method of partlal linearization. To set forth the method /190
of partial linearization, we can represent the solution ¢ (V)
as a Taylor series

0@ (m J\.) 3 !

=0 (5.86)

2 (V) =9 (v, A)-mr::(m A —-0)_{_2

where, as earlier, A 35 a vector of weakly—varying random
variables admitting of linearization.

In Eg. (5.86) %%‘ denotes the partial derivative of the
function ¢(V) in elements of vector‘ﬂ , Wwhich is a random function
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of vector wof strongly-varying factors or a function of first-
order sensitivity. Relation (5.86) enables us to compute the
statistical characteristics of- wqw(v{Lk and}g?mWV)H based on
the formula - e

Mig (V)] = Mig ()],

#[g (V)] = M5 ()] + Z.’J'QM[( 63§:’))]2~ (Mg (@)])2. (5.87)

When Egs. (5. 87) are used as working formulas, we must
investigate the enlarged system of equations including, on the
one hand, equations of the form (5.2), and on the other hand,
differential equations of sensitivity of the form 132/:

1

iy = ""f| it aa;\

= oX
hz(fo)“é (’:"‘1 2 ) {(5.88)

In Eq. (5.88), we let = amL k

The joint integration of Egs. (5.2) and (5.88) enabled us
to calculate the required statistical characteristics of scluticns
of the initial system (5.2) within the frame of reference of
correlation theory, however, here we must know the structure of
the function ¢ (V) in the form (5.86).

Method of B. G. Dostupov. Underlying the Dostupov method
1s the hypothesis that the solutlon of the system of nonlinear
equations (5.2) can be sufficiently exactly represented in the
form of a segmeht of a Maclaurin series. We present the exposition
for the example of computing the statistical characteristics_of
the function ¢ with a single random variable v. We have /19/

(5.89)

Using expansion (5. 89), we get working formulas for computing
the moments of function ¢ in terms of the realizations ¢(1)

obtained for specified samples of random variable v. Let Vi(1)s
Viayr st Yo be some sample of values of the random variablewsv. /191
Then, obviously, the following expression is valid

1 ok
o) = X4 (dﬂi-)v:fﬁ- (5.90)
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Multiplying the left and right sides of equality (5.90) by
some welghting coefficiéﬁﬁ$u.s, let us sum the resulting equations

in the subscript s.. We will have

N e .
N ooy = S [ Y‘
ﬂ( Zk (avk) g st %57 (5.91)
If we asgume that
N
W — _
s‘:]as'vi = M [v"] (k--.o,l,g, ...,q),/ (5.92)
then the identity | 5 -
Mz = X 2 (,)a
= (5.93)

is valid, since by virtue of (5.89) we have

M) =25 (‘; ‘2) e (

The system of algebraic equations (5.92) can be used to
determine the numerical values of the welghting coefficlents
!a% and for the realigations of the random variable vs for which

we must ealculate the function ¢ (v).

The working formula for computing the mathematical expectation
of the function¢ (v) is quite simple: 1t .is necessary to add
realizations with assigned weight o, .

In the case of the m-dimensiongl vector of random variables,
relations can be written out that are analogous to Eqs. (5.92)
and (5.93) for computing the mathematical expectation of the
assigned function ®(V). We will have '

m

T q " -
&' 1 N\ 6"’”"?
o (V)= Sgr 2 (a,, Tt el ARG
Ti=1 ] 0
m
Y
sl

" N

N g Nr

V ¥ = ‘1L V ¢="kyp V rrs r
otV = 2 o | U T .. 00 st 55 YSUE U,

s=1 k=0 ry==l fpy ==l oot Tw fqs .

. q m m N
N X N X () Moo (5.94)
M) = B X o\ we), [’ .. .o,
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whence we pave.the relations /192

i N N ;
. Tofi T r : {
Mo"v™. | '] = 2 UYL O (1, Fey ..., Py = 1,2,...,1:1);1} (5.95)

s=]

§==1

N
i Mle} =3 a (Vg B, L, Th). ] (5.96)

The system of algebraic equations (5.95), like the system of
equations (5.92), is used for. determining the realization of
random variables V| and the weighting coefficients a_ ( s =

]
=1, 2, ..., N).

Using the above results, we can easily write working formulas
for several particular cases /19/.

I. When qd = 2, we can easlly obtain for uncorrelated and
centered elements of random vector V:

. N N

! » .V o— (e
aq = =

& 0=k Zeon=0
X {Q,rﬁérz

' FLyfa —
- 2 ATV = a'f" ry="1a

Szl

(r,r.=1,2,...,m).

(5.97)

The number of equations in system (5.97) 1s determined from
the formula jpp.(m+tDim+2 When N = m + 2, we will have

the followlng working formilas:

T T mye : ‘m : _ .
K Mle (2)] *gl%% - — (; 9, (v,) + _.“"ﬁi‘ﬂ_g_‘”'i’.i_‘_)
|
\

2] (V)]"‘*-l- E 2 P2 = Fmit (M 3
a® fe(V)] =~ — ol =5 | — (M[¢]),

§==}

‘ S=cs]/-rE; c‘pm+l=q:('vl,'v2,...,vm};

| Fman = E (T T T = T | (5.98)

IT. When g = 3, working formulas (5.98) becomes

Mie] = -

m

2 (7 (+2) +2(—v));

| 5=l

2m

=1

LRl (V] 2 (52 (0,) 490 (—v) — (Me) R,

o

(5.99)

—_

where
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Similar formulas for g = 3. are presented in /19/ Thus, /193
application 6f the B. G. Dostupov methed boils down to the following:

calculating the table of realizations of random variables for
which 1t 1s necessary to calculate the Tunction ¢; and

treatment of the calculation results by formulas of the form
(5.96) - (5.99).

All the foregoing dealing with computing the mathematical
expectation and the dispersion of function ¢ is valid also con-
cerning the elements of vector X(t, V).

Interpolation method of V. I. Ghernetskiy. Since the solu-
tions to equations (5.2) are determinate functions of time and
the random variables v (j = 1,22, ..., m), the approximate repre-

sentation in the form of interpolatlonal polynomials in the factors
Vis Vo vy Vo is possible for them. Let us denote the realization

of element Vi of vector V by the set @y| 1n terms of?vmﬂx, where
subscript ki denotes the competing realizatlon of the element
vi,jand let us consider Qg realizations of each element V4
Obtaining the set of numbers ””m- Vrpe ”"@m%Ja\ let us compute

for each element in this set the function ¢(V) for the solutions
to equations (5.2),; uUsing here the methods of analytiec (if this
is possible) or the numerical solutlon of the nonlinear differen-

“tial equations. We will have

Q'Dkllk‘z:---'km = CP(‘ZHI!!, Tj?k,' . ..,"Umkm)_ f

The integral polynomials, represented approximately by the
function ¢ when the method of point interpolation is used, will
have the following form:

s T T qr{,‘...,a “J “’qj (‘Uj)

PP= Chy, b : s
s 12 52 . e

i By, ko - B GI- (?ka) ["J vJ';zj)

(5.100)

Hr

where R S : -
' “ﬁ;(”i)“‘(”1“‘”3)(”;"”h)"'(ﬂi”'zU%jml (5.100")
1s a polynemial of degree qj with respect to the randcem variables

J’ .
m;] are values of the derivative of pélynomial (5.100') in the

random variable vy computed at the point |



Eq. (5.100) ensures at the ingegration nodes the coincidence
of the Interpolational polynomial and the realizgtions of random
function (V). Let us apply the operation of mathématical expec-—
tation to the left and right sides of Eq. (5.100). We will have

Uy itge e @y

NRCIEY() ) S

: 0 P2 T T

Ryt B TR e (5.201

[

The quantities-' | o - /194

! ) ot w, {u;) '

b [ ]

LT ko fw[ﬂ g L =
; TUer e N i ) [N UYio—

: = '!-( / ) i 1 )
S s= i e ) %

g (vj)dv, dus ... du,,

!

|

}J= o fO('z‘]!,vili"'srvm)” v

r j 5 "1 () (1 ) (5.102)

depend on the sampling of randon variables%hﬁm”"hn=P(@u,@%m
(kl."'lf‘3 ',ql;k2:1127"!q2;".k=12

Peany, ’”k )
1

and are called /79/ Christoffel numbers. By v1rtue of the earlier
assumption that there is no correlation between the elements of
random vector V, Eg. (5.102) can be represented as

- ——-

\ n o
Pk;.lag, A I—l Prj»
. j=1

that is, for the vector of independent random variables the Chrisct i
toffel numbers can be represented as the product of the corresz
sponding one-dimensicnal Christoffel numbers.

(5.103)

With reference to Eq. (5.103)}, let us write out the working
formulasfor compuﬁing the mathematlcal expectatlon of the funection
. q‘l“"}fz_* m
Mle] = ' @ ,
b %..,km " ”2"""'”!,[1““ (5.104)

In /79/ it 1s shown that the approximations converge with
the use of the interpolational method to the exact value of fthe
stochastic characteristic of function ¢ , and in this work it
is shown that 1n this case the Christeffel numbers are the roots
of the orthogonal polynomials in a weight that is equal to the
density of the distribution of random variable vy Here the

following theorem}/79/ is vwalid: "If one selects as the inter-
polation nodes the roots of orthogonal polynomials in a weight

that 1s equal to the density. of the distribution of random variable
Vi when n 1nterpolatlon nodes /are used, the interpolation method

gives exact values 1in the class of polynomials. of all degrees up
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to the degree 4 = 2n - 1, inclusively. Here 1t is not possible
to enlarge the class of absolute precision Jfor any other poly-

nomial approximation." Also given in /79/ are. theé interpolation !
nodes and the Ghrlstoffel numbers for the normal distribution of
probabilities.

Thus, selecting the number of nodes for each of the elements
of vector V, we can write out the sgets of coordinate (nodes) and
Christoffel numbers which enable us to detérmine_thélentire set
of interpolation nodes. For the remalnder, it is Tequired to
compute the function ¢(V) at these nodes and to treat the results /1385
using working formula (5.104). Eq. (5.104) can also be used for
computing the mathematical expectation of the square of function
¢{V). To compute the mathematical expectations of the square of
function ¢(V), let us use the formula

G2 e Oy m ag (U)f
21 — q; !
M[2?] = M[ 2 ‘?ka,m,...,am ﬂ o Ton I X

Ryaky oo R Je=l '?j( ka)( i ka)

' A G -n f .

! 1+ 1y m mr” (Ui) k

:J X Z c?"].' V32t Vi m’ v . =

| ¥is Yoy F 9; ( ivl.) (Ui - UEVI)

092 - 9y 70920 -0 Gy

k]
Cpk],k:z,....km TYD Y2y s Y Pkl.kg, . km: GTRoT ....vm'
k1 ko, ...,km VI o Y )

where : - - S . .
| m (qu (Uj) [

p ' = M
B e e b Ve iy [}I:[l “ay (V) (71 =) -

¢ T s &9 ]

|

t

I i=1 mq, (va‘) (ﬂg -~ vl‘vi)
! N - -

For the case of uncorrelated elements of vector V we cbviously

have - o
kl’ R, ey km; Vi vy, ""yﬂl - Pk[_ kg‘ s km = n pkjv
L=t (5.105)
where o .
i S S e o
ij=M[( ot g
‘Qj(vfkj)(yfmvfkj) ’ (5- 106)
therefore B
'ﬁﬂkd[ o ane iy, e -
(V)] = Yo
; ST e m P
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Referring to the property of Christoffel numbers [727, we will
have

and with reference to this Eq. (5.107) KEEC}/brobably Eg. (5.104) /196
is meant/ becomes

0920 e g

! M[:‘?(V)Iz E m? HP

] . TRy ke
i - kl kz km J“ﬁl

(5.107)

As a whole, summlng up the foregoing concerning the Chernetskiy
interpolational method, we should note that the 1nterpolat10na1
method has guite broad potentlals in the sense of 'precision Jln
determining the mathematical expectation of function ¢(V). However,
the number of nodes here can be appreciable. Thils corresponds to
a considerable volume of calculations in computing the function aﬁ;
the nodes jassoeiated with integrating the system of stochastic
differential equations (5.2). Therefore the problem of reducing
the order of the  vector fof strongly varying random
variables 1s one of the key problems in multiple analysis of non-
linear stochastic equations of the form (5.2).

As was shown gbove, in this case we can use the method of
incomplete and partial linecarization in which the statlstlcal
characteristics M[¢(, m)]rM{@(f @) 1. M[hi (2, o) Vi: (£, ©)] 0—1 2, ..., mg)\
can be computed by employing the Destupov method, the method of
statistical tests, or the Chernetskly interpolational method.
Obviously, a combination of the method of incomplete or partial
linearization with the Interpolational method enables us to
considerably reduce the volume of computational work in deter-
mining the statlstical characteristics of nonlinear stochastic
systems.

It should be noted that in the method of statistical Tests
it apbears possible in the course of computation to monitor the
convergence of the estimates of statistical characteristics even
if only from the fact of their variation wifth increase in the
number of tests, while in methods based on any hypothesis on the
structure and nature of the relationship (5.81) this monitoring
is not available. This means that in the absence of a priori
information on the structure of the function (5.81), it does not
appear possible to obtain reliable information on the statistical
characteristics of the function ¢ (V) empldying these methods
(the methods of linearization, the Dostupov method, and the
interpolational method). Therefore the use of these methods in
single statistilical analysis of nonlinear processes of the form
{5.2) can scarcely be justified if we do not know {structure 47
of the relationship (5.81).
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Use of methods of the statisfical analysis of nonlinear
processes (5.2)ibased on hypotheses on the structure of the
relationship (5.81) is advantageous 1n multiple analysis of
stochastic processes of the control of flight vehlcle motion
in the earth's atmosphere. However, an-additional problem
arises here -- the problem of studying the structure of the
relationship (5.81) for a substantiated application of one of
the metheds of the statistical analysis of the control processes.
Essentially, this is a problem of resolving the vector of random
variables V into components that include weakly-changing and /197
strongly-changing random factors, and determining the components
of vector V that significantly or insignificantly afifect the
control progess (5.2).

Since thls problem 1s of lndependent interest, approaches
and methods of solving it wlll be examined in the next chapter.

Of interest 1s a group of methods of the statistical analysis
of nonlinear systems based on using an approximate representation
of the function ¢(V) with the polynomial

hﬂﬂha-+Vaﬂ+- a,: v+ .

’ ! :%@:“’ ' (5.108)
on a set Q&] of random variables V, or ifts expansion in a Taylor
series 1in the nelghborhood of the value vV = O:

t

o d
e V)= (V= 0)+;0;] -3_,—2 —3’~

ijl

vv -+

(5.109)

If the representations of the function $ (V) in the form
(5.108) or (5.109) are obtained, that is, if the numerical values

of coefficients a R a 5 alJ ..+ and the partial derivatives
7 0%
ﬂéi‘dvﬂw <..st We can p081t as the basis of the algorithm of the

statistical analysis of the process (5.2) the following relations:

Mo (V)] =M[3(v)), (5.110)

B2l { VY] = »
) ()] 5.111)

and SO on.
For the case of the quadratic representation of the function

¢ (V) with polynomials (5.108) and (5.109), Eas. (5.110) and (5.111)
become:
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| Mle, (V] = a0t S a M2,

f==]

M [;f (V)] = ]+ :; aM (23] + 2a, ﬁla”M [ +.

+2 3 a3y M o3 M [2] + NalM [
' i=1

(5.112)
and :
Mg (V)] = 5V = 0) & l,:S P M o]
J = fmdv; o
| /198
| il
| ﬂd[?z(V)]-?\(L’ 0]4-:L(Ef) M [v¥] +
e (V=0 TM - i
Jz 5ot M (98] + 2_‘,(001) [v1] +
.J__i v P 3® : :
) b4 H;]rl:ll (dv;dvj) M[WHM[’U}%} (5.113)
respectively.
"For the linear model of the function L /f\_

e e }
VeV =ao+ ¥ e, i\
oo =

j‘(.-. - 'V o | -m a3
(V) =g (V=04 gl;,;%% .

Eqs. (5.112) and (5.113) are considerably simplified and are of
the form

or

7 X B ) P iaﬁm ] (5.114)
o L M_l-ﬂpr'i( V)] =9 (V 0)
- mlEn] = (Vj——0)+;(a—f,‘_) M (o] (5.115)
respectively.
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To employ FEgs. {(5.112) - (5.115), we must 1md1cate the
approaches in computing the coefficients’ ‘o, ax, mb (V 0) a oaj
and so on. - v’ 0ui0v

In computing the coefficientS'ao, &y and aij’ we can use

the method of least squares /§57 enabling us to find the unknown
coefficients from the condition of the optimum approximaticn of

the function @(Vﬂ with the peclynomial @(Vﬂ of given degree in the
sense of ensuring the minimum value of the criterion &f the
approximation quality

N

Iy=2 [WJV]*@mﬂwﬂk \

=]

. | (5.116)
where'ymfv”ﬂy 1s the value of the function for the specified

realization of vector V = V(i) %zmhf ﬂ is the value of the

polynomial -for this very same realization of the vector of
random variables V.

Intxnoducing the notation
A# ((z L, . .czjnczjlrzlg R -,
Py = (1ol aileiPaflold | 20 ),
S3=(*m?M'j?mnjiﬂwQ? ”“(Pmﬁ,_
we can write criterion (5.116) in the form
o :
Ty =S —PAJ 1S~Pal. | (5.117)

Determinlng the partial derivative of the right zand left
sides of equality (5.117) in vector A and equating 1t to zero,

we -get
Ay
A =—QQS PAFP 0,

" P“‘PA P”S—-] (5.118)

We can write the solution to equation (5.118) in the form

A= '("ﬁ;%)-‘ﬁ*!sj

whence it follows

(5.119)

~
l.-l
\O
\Xe)



In the linear model of function ¢(V), the vector A has the
dimension N=m+I1.| . For the quadratic model of the function ¢(V),
the order of vecfor A increases to;§@=05(éﬁ;3nﬂﬁaj where m is the
order of vector V. T -

Accordingly, the number of equations 1n computing the function
¢ (V) must be larger than N in order for a matrix that is the
reciprocal of the matrix P¥P to exist.

Below the numerical value of vector A obtained as a result
of computations based on Eq. (5.189) will be referred to as the
estimate of vector A and will be denoted with A.., If IN>W¥| , Eq.
(5.119) can be used in estimating the criterion}of the gquality
(5.117) characterizing the exactness of the representation of
function é(V) with polynomial $(VJ. Let us present several
transformations of Eq. (5.117), using Eq. (5.119). We will have

7\ =[S~ PA|* [S — PA| =[S — PA)* [S — PA] =|

= [$ —P(P*Py" ' P=§|*|S — P(P*Py" ' P*S| =
= 5§58 —S*P(P*Py" P8

(5.120)

Ty = 558 — §¥PA w5 s~ B } ' (5.121)

Egs. (5.120) or (5.121) can be used in estimating the exact- /200
ness of the approximation of ¢(V) with polynomial (V).

or

The method of least squares for constructing polynomials
(5.108) can be successfully used for a small order of the vector
of randcom variables V and for a low degree of the approximating
poclynomial.

Table 5.2 gives the numerical values of N for polynomials
of the first and second degreeg. From the table it follows that
even for an order of vector V equal to 10, constructing the quad-
ratic polynomial for the function ¢(¥) poses considerable diffi-
culties of a computational nature,

. __ Table 5.2
‘Degree | n _
of poly'n'bmial' i l 5 , 10 ] 15 | 20 25
1 2 1§ 11 16 21 20
2 3 21 66 136 | 27 351
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_These difficulties are related to the inversion of the matrix
C = P¥P of order N X N, contalning jiz:NL;N\ distinct elements

(when N = 66, we have M = 2211).

This procedure of computing the statistical characteristics
of the function ¢ (V) based on its approximate representation has
significant advantages over the Dostupov method, the interpolational
method, and the method of partial linearization in that here we can
determine -the numerical value 8f the error of representing the
function ¢(V) with a polynomial #(V) with a given degree in the

form . 1 - Y
el gy 7, — (M [e]?,

 §0=Sm“i%ﬁ:]
Enowledge of fthe characteristic 25} of error € of the
representatlon of function ¢(V) with polynomial ¢(V) enables

us to write the expression

9(V)=;(VL+;:J

and to indicate the error in compufing the required character- /201
istics of the function ¢(V):

Af
1
M["’] = "]\T“Zism '

where

HLM[?“01=Ju[;(Vﬂ4-wﬁq; ﬁ[;ﬂnl==4§(Vﬂ+—thJ (5.122)

This method of computing the statistical characteristics of
a function based on its approximate representation can be used
also in other systems of representing the function (V). 1In
principle, we can form an arbltrary system of functions wi(vi )]
and set up a representation of the form T '

c e e e m R .
cel{V)y=a,+ ¥Yag (v, 1) 4 3N oayn v, (v, Z;)—]
fi=1 i, j=1

(5.123)

or

.. (f(A | ) ao—!_;::_‘lairli(‘v”,:l). l (5.12”)
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For example, the functlons y(mﬂcan be of the form:

T (TJ;, Y} = sin g
i (T’n 7t bn ;) = Sin y,v; + by cos v,
and so on, where by, vij are the unknown constants.

In this case, to find the estlmates of all the unknown coeffi~
cients .a0,@s @i .. %o v bif , and so on, the method of least squares in
the above—presénted form cannot be employed because the unknown
coefficlents -can appear nonlinearly in the selected system of
funetions 4 vy and in Eq. (5.123).

Substituting Eqs. (5.124) into eriterion (5.116)

JA v[ (i)[Vm] };j?ﬂf(vf‘xf)lﬂ (5.125)

let us set up a function of many variables in the unknown coeffi-

clents ai and Xy * To find the mumerical values of parameters

a, and’ Xi’ in practice it is difficult to use the necessary
condltions for the minimum of criterion (5.125) in the form

| ajit;j'; My ' o, -
da; 51.‘ _ (5.126)

since the system of equations (5;126).15 nonlinear relative to ay
and,xi and 1ts direct solution usually poses considerable diffi-

culties. Here we can find of assistance the numerical methods of

seeking the extremum of a function of many variables JN. This

problem is guite simple computationally, since the criteria (5.125)
is analytically expressed in terms of the unknown parameters and
multiple computation of 1ts numerical value on a digital computer
does not usually represent a barrier to the approach of constructing
a good approximgtion of the funetion @(V). An advantage of the /202
process of computing the statistical characteristics of the func-
tion ¢(V) by i1ts representation (V) lies in the fact that for

a restricted number of experiments in the computation of the
function ¢(V) for specified realizations of a vector of random
functions V, we can construct an approximaticn of the function

$(V), estimate the error of the resulting approximation of the
function, and find the required characteristics of the desired
function.

This approach of the statistical analysis of control processes
in the earth's atmosphere is obviously necessary when computing
one realizdtion of the function ¢ (V) involves large outlays of
computer time in integrating equations (5.2).
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When setting up the model (5.109) for the function ¢ (V),
must compute the partial derivative % &%

... ,poploying the'
0tr dU 12T
solutions to Eq. (5.2).

In practical applloatlons the function
#{V) can be given as a functlon of the phase coordinates of the
process (5.2), for example, 1n thé'form

(V) =G, u¥7‘bn | (5.127)

S .
o (V)= [ G.(X, ¢, V) as,
B e (5.128)

where T is the duration of the control process.

or

i

. . . \ ;f_’{ g%
S%nce the partial derivative Bv;" Fus;

and (5.128) are of the form:
! Op _ 0G)0X | 0G,
J ody T X ovw T dup

for Egs. (5.127)

@4 @{ﬁmmax+a@ _OX | #G 0X | 20,
du;de; L@v,— dXt du; ' 0X dviduy | oviduy oy ' duduye

.
ey _ 06, X, iG] .

o Ea‘*§[axavi*0vjd“

1

i

&g _jKMrW@dA+ﬂde_+&ﬁtﬁ+ &@] E
. du,du; g du;l dX? du axX duiduy ' duidX dup | dudy; : {5.129)
then, introducing the notation
ox PX i
. m=5;’hﬁ=aﬁﬂ(b<1=lﬂw-th
we will have - /203
| O 9Gy, | 9G T :
H dv; ~ OX f*‘am
o2 le — A" gt (‘[ 001 (TG; ()EG[
! dv;dv; hi dX? Ay +5x "} i+ o, ov; Ay + du;dv;?
[}
| T
den oG,
!h v bg[dX]_[—()v]dt
' a2 "l 0G 9G
fa . Rt Ve
Fo; ~j[ R i
G &G (5.130)
: +0U0;ﬁ,+“;]dtu<,_.12 m).




In Eq. (5.130) hirand‘hij are functions of the sensitivity

of the solutions to.Eq.'(5.2) in random variables vy (L =1, 2, v.us

m). To compube them, we can use the differential equations of
sensitivity /50/. Let us write out the differentlal equations
of sensitivity for a nonlinear model of the control process (5.2).

Obviously, for Egs. (5.2) represénted In the form

X3 L'—f.! (.«’C], Xay oy Kot V, t)o

o (ty=x,  (U=1,2, ... n). (5.131)

fthéﬁféllowing system of differential sensitivity equations of the

first and second orders 3/
l‘ - .- P . . | ) e
, By= (B0, B, B,
= 2
By = (B0, 48, ... b,

n
. N1y o Of
]I})—f:a“;},!;”—}——',

001
. n n n
2 N Of &S & &f
{1} — SO gy .l v 5 4
. htj kE--l dxp hir) 4 k~2=1 dxpix, ]ﬁf“b&) + ;dvidfx“ }z}}+ dﬂ,ﬂt[fj’ ‘
ﬁt(fo}zhu(to)=0 (iéjzlygs";sm)' [4 (5 132)

The Joint integraticon of systems of equatlons (5.131) and,
(5.132) with V = 0 enables us during a single integration to
compute the function ¢(V = 0) in all the necessary partial
derivatives for setting up a model of the function (V) in /204
accordance with Egs. (5.130).

It should be noted that model (5.109) can be used only if
the function ¢(V) is differentiable with respect to its arguments.

Analysis of the above-presented approximate methods of the
statistical analysis of a control process deseribed by Egs. (5.2)
enagbles us to establish the common ground in approximate methods
of the statistical analysis of nonlinear systems:

1. Selection of the realizations of vector V (sequence
(5.78)) in the space {7y in which the function ¢{(V) is computed

for the solutions to Egq. (5.2);
2. Treatment of the elements of sequence (5.66) composed of

realizations of the function ¢(V) or solutions to Bq. (5.2) for
elements of the sequence (5.78); and
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3. Verification of the exactness of the resulting estimates
of the statistical characteristics.

Setting up the sequence (5.78) of realizations of random
vector V in the method of statistical tests, the Dostupov method,
and the interpolational method usually involves properties of
the density of the probability distribution of vector V. Essen-
tially, in the method of statistlcal tests, the elements of
sequence (5.78) must satisfy the assigned law of the distribution
of probabilities fO(V) of vector V. In the interpolational method,

the properties of the function fO(V) are used in computing both the

interpolation nodes as well as the Christoffel numbers. In the
Dostupov methed, the properties of function fO(V) are used both

in computing the nodes at which the funetioniis computed, as well
as in determining the weighting coefficients g (s =1, 2, ...)

necessary in solving problem 2, that is, treatment of sequence
(5.66). However, the elements of sequence (5.78) in the Dostupov
method and in the interpolational method are not associated in
explicit form with the density of the distribufion of probabilities
of vector V.

The solution to the problem of setting up the sequences, i
(5.78) and (5.66) in the methods of statistical analysis of non-
linear systems can be viewed asza process of experiment planning,
since experiment planning is the planning of a sequence of tests
(experiments) following a scheme that exhibits some optimal
properties /77/.

Since the gelecticon of sequence (5.78) in these methods is

- assoclated with the algorithm of treatment of sequence (5.66),

obviously the first problem in methods of the statistical analysis
of nonlinear processes 1s the problem of experiment planning.
Accordingly, in the method based on using the models of function
¢{(V), computing the sequence (5.78) can be based on methods of
the theory of optimal experiment planning /82, 447 and the methods
of multifactor analysis.

5 H' Method'of Statlstical'AnalySis of Contfol'ProceSSES with /205

In the discrete-continuous model of specifying the perturbing
actions, the process of investigating the statistical characteristics
of a nonlinear stochastic system becomes considerably simplified
both as to the planning of experiments as well as in the inter-
pretation of their results. Suppose that in this model of pertur-
bations all the discrete random variables are arranged in the form
of the sequence



A Ay, (5.133)

for which the probabilitiéS‘of‘thé'states of the discrete random
variables

flip“{:‘“‘gf%_{ (5.134)
are specified,
In the sequence {(5.133) we can single out the events
A = 4, {un un'ﬂ \vu} ;mi 2 i (5.135)

and the probabllity for each of these can be computed by using
the series (5.134).

Then we can write that the right-hand sides of the nonlinear
differential equations of fthe control protess will be determined
by the sequence (5.135) of events, that is,

R =F(x, A0 ku@mxr y (5.136)

Obviously, the solutions to Eg. (5.136) will also be determined
only by the Series of events (5.135), that is,

X =XtA4). ] (5.137)

Thus, the solutions of nonlinear equation (5.136) are discrete
random varlables with possible wvalues (5.137) with probabilities

LA (=1.2. 7 o)l

To compute the central and initial moments of k-th order for
several functions of the solutions to Eq. (5.136), for example,
¢ (X), we can employ the following formulas from probability

theory:
- -
mmw=2wwme_] (5.138)

=1

b= MUz — Mizlp = ¥ ( (4] —

Fe

I i
- E ‘?‘AJ[P(AjI) 2lal. . (5.139)
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The resulting working formulas (5.138) and (5.139) are quite /206
simple for computing the statistical characteristics of the assigned
functions of solutions to Eq. (5.136). Let us illustrate the fore-
going with an example of a stochastic system that has two discrete
random variables in the right-hand side, each of which has three
states (-1, 0, 1) wilith probability 1/3. Then the matrix of experi-
ment planning will be’of the form

S R EHEHH]

The probablllty af each of the events AJ is p[AJ—- ﬁ .
Obtaining for each event Aj (3 =1, 2, ..., 9) the solutions to

A=

Egq. (5.136), we can compute the stabtistical characteristies of
the function ¢ (X) based on Egs. (5.138) and (5.139), for example,

' 9
Mlzl =5 Y ¢4,
P

9
2 1 ”
Mg’} =5 ¥ 32[4)]

and so on. ' . : -

_ The applicability of this method to problems of investigating
the scatter of flight vehicle trajectories as well as other sto;g
chastie processes will be determined by the number of random
factors and by the number of thelr states, since they define the
number of solutions to nonlinear differential equations (5.136).

Accordingly, even for the discrete-continuous model of
representation of perturbations, high significance lies in the
problem of analyzing the significance of random variables and
reducing their number, given the condition that this does not
lead to considerable errors in the numerical values of the
statistical characteristics of the solutions of the nonlinear
equabticns.
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CHAPTER SIX

.
A
[}
-~

INVESTIGATING THE EFFECT OF ATMOSPHERIC PERTURBATIONS ON
THE MOTION OF FLIGHT VEHICLES IN DENSE ATMOSPHERIC
LAYERS

6.1. Investigating the Significance of Atmospherie Perturbations

The problem of investigating the significance 8f random
perturbations in the motion of flight vehicles bears both indepen-
dent slgnificance in investigations of the motion of flight vehicles
in dense atmospheric layers, as well as applied significance in
multiple statistical analysis of the trajectories of flight vehicles
in problems of optimizing lcontrél systems. The necesgity of inves-
tlgatlng the significance of random variables vy (L =1, 2, ...,

m) of the mathematical model (5.2) in forming the scatter of phase
coordinates X with respect to their unperturbed (reference) values
X arises when solving problems of the numerical optimization of
processes of controlling the motion of flight vehicles in dense
atmospheric layers when adopting solutions on the utility of
estimating and predicting both atmospheric perturbations as well
as aeroballistilc parameters of fllght vehlcles.

If the moticn of a flight vehicle is degcribed by differential
equation (5.2), and if the quality of the probess is characterized
by some functlon = M[wnX Tﬂj then by virtue of the dependence of
the solutions to Eq. (5.2) on the elements of the random vector - |
Vixy (6) =x( V) (i=1, 2...., n),)the function ‘¢ (X, 7)) in implicit form

depends on the random values of vector V and is of the form ¢{V)=:{X.7)]
The problem of investigating the signhificance of random
variables vi in forming the scatter of the function ¢(V) is

¢lasslfied as a problem in multifaétor analysis; in recent years,
a fairly large number of studies /T2, 44, 58, 75, 77, 817 have

been devoted to elaborating and applying this class 6ff analysis
in various fields of technology. Underlying methods of multifactor
analysis of the function ¢(V) 1s the problem of obtaining some)

195

i



196

model of the function $(V).on the condition of the optimal approxili-
mation of the model with respect to the test functlon ¢(V). Since

in practical problems 1t is impossible to obtain an analytic eXxpres-
sion for the function ¢(V) owing to its dependence on the solutions
to differential equation (5.2), except Tor the case of describing

the motion of a flight vehiele with linear differential equations /208
of the form (5.10), we have to limit ourselves usually to repre-
senting i1t with the polynomial

(6.1)

R . o R
(P=a|)+2aiﬂf+ 2 aijvi?j+-'.. {
iim-!_ J‘ij:l— B .

The problem of constructing an approximating polynomial (6.1)
can be solved within the frame of reference of classical regression
analysis, employing the method of least squares /1//. To do this,
obviously we must form some sequence of the random vector (5.78),
and for each of its elements we must compute, by integrating
equations (5.2), the function ¢ (V), that is, we must set up a '}
sequence df functions {(sample of reallzations):

Ao, (6.2)
and then we must treat the sequences (5.78) and (6.2) by empléying
relations (5.109) and (5.121).

Setting up polynomial (6.1), by analyzing its components on
the set § iwe must solve the prcblem of estimating the contri-
bution of each random variable to forming the scatter of the
numerical value of the function (V).

The dispersion /817, component / 1/, and factor /35/ analyses,
and methods of experiment planning and Interpretation /31, 36, 42,
77/ enable us to solve the problem of estimating the contribution
made by random factors {(elements of vector V) to forming the
scatter of function ¢(V),

Let us assume that we have set up a first-degree polynomial

;(V) = ao+2 a;y;

=1

(6.3)

and that we have computed the statistical characteristics of the
function ¢:

MV Mg (V)] (V). |

Let us obtain estimates of the first two moments of the
function &(V) by using representation (6.3), on the assumption
that there is no correlation. between the elements of vector V
and the centeredness of its elements. We will have



Mle(v)] =,
Mgl = g+ 3 aamwy,

i=1

2o (v)] = 2 adh|vy].

(6.4)

Under the normal and equiprobable i(v:i=[—b: 65])| distributions /209
of the elements of random vector V, Egs. (6.4) become:

mlzw] -,
mle @] =ap+ 3

2l )]~ S a2

and —
M[; (V)J =y,
mlew))=a+ L3 an,

From Eq. (6.4) 1t follows that the contribution of the i-th
factor to forming the dispersion of funetion ¢(V) is!deﬂﬁned by
the expressiocn

o =@M, (i=1,2,..., m). *(

(6.5)

Let us introduce the coefficient of significance for the first-

degree polynomial
f 3rl = _L
. ‘i_'ﬁM(VHi_ (6.6)

Table 6.1 glves the expressions for Eg. (6.5) and (6.6) for the
normal and the uniform /equiprobable/ laws of the distribution
of elements of wvector V.

similar relaticons can be ¢obtained for the polynomial of
second degree:
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1 - . 1 [ 7 ’
.‘t ?(V)=a.,+}: av,; -+ E a;;.
N (6:7)

Table 6.1 1
Notgéion /| General ) [Pormulas under jFormulas under iini-
formals normal distr, [form distribution
T ' 1 . .
t o al {v?] als? L ¢
Hj i
L g 0/ , 7 L
' Nl [‘P] a; — a2
(\L... / - [lP} g a, e {1:]

We will have

‘ ; 1 T
| 2
’ M f “.LI = @+ E nii*M ['vi.]\

fa=1

|-
- mn

Ml ] = ag 430, 3 0, myoy + X o2 o] +
i=—=1] i==1

i E; GMo]|+2 X aa, Mg M+ ¥ e x

, i= fi==1

X M () M),

i f==1

bl = 3 e o) a4 o — (e +

+ N al Mol M [

i<, &=1

We introduce the notation

T o - ; _ -
CIU = aji = “Q—a”. B

Then we -get the following expression for the coefficient (%]

characterizing the contribution of the i-th factor to forming the

dispersion of the function ¢(V) with respect to the second-degree
polynomigl

i

A == QM [WF] + a [M [oF] (M 3] ] +
m '

+ M0} Y LU M.
El * (6.8)
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Let us define the coefficient of significance by the formula
--qﬁ :

=

Using the computed coefficients 6n@f and=@n9¥ , we can divide
all random factors into essential and unessential. Unessential
factors need not be taken into account in the further investigatlons.
Of the essential factors, we can distinguish the weakly and strongly
varying factors, that is,factors for which we can elther use a
linear model or set up a more complicated nonlinear mabthembtical
model. To solve this problem, we must compare the linear and non-
linear (quadratic) models of the function under study.

Let us define the coefficient of nonlinearity byuusing the /211
relation

(6.9)

where
A'qt = ”f;}?] _— 7‘-5”,. 1

e : (6.10)

Substituting (6.10) into Eq. (6.9), we can obtain the following
expression for estimating the coefficient of nonlinearity:

kg = 1 a8, | | (6.11)

where

Table 6.2 glves a listing of the main working relations for
solving the problem of estimating the signhificance of random
Tactors by employing a second-degree model.

o

By computing the numerlcal values of the coefflclents“fAn ]

hqsn mW?Oﬂ]} Wthh we have'}introduced, we can solve the problem of

egstimating the contribution made by each of the random factors to
forming the scatter of the function ¢ (V).

otherw1se - strongly varying. .Here ¢ 1s a prespecified positive
number determined by the required precision of computing the
dispersion of the funectilon.
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Table 6.2 .

e Tdr uni
. Notation . [Genefal formulas.termulaa underj Formulas-undér‘uprx
- ‘ : __moermal distr, | ferm distribution -
1) . 2 2 2,9 [
| g a; M [v,—] a;s; ug—afél?
a-? M [ :“)] + —é—-a;?bf L
+ak [ [ul] 3o + 20,5+ i o
5 2 + aeanty -+
I I | E A i il
zmz‘g: ) 4);‘;:1‘}1 Ibgj—-obg
-I-M[ﬂ,jgl-.ai_‘M[v? T3 G
2T 4
agy lM lvi]— 4 o,
! 2 T " 4
(2} - (M [vz-])?] 4 2a3,5F + 5 ay b+
Axi ’ 2
- RSEAMNE “1ﬁ?ag L 2w ae
RGP RG> RV IS L
=

The presence only of the linear model of the function ¢ (V)
also enables us to solve the problem of differentiating essential
and unessential random factors. Thus, we will have the coefficient
of significance

[

#le] | (6.12)

If oﬁ”\ or's;® is smaller than a prespecified number §,

then we can neglect the i-th factor. We must make several remarks
concerning the selection of the numbers ¢ and &

Usually the realizations of the function ¢(V) on a digital
computer are computed with some error A¢ . If we assume the error
of computation to be random with a normal law of the dilistribution
of probabillty density and with specified statistical characteristics
M{A¢]=0, D[ag]=0?[Ap] , the lower bound of the admissible values of
the coefficients of significance can be determined by the following
dependents:

The upper bound of the admissible. values of these coefficients
can be specified in accordance with the requirements of the
precision with which the statistical characteristics of the function

¢ are computed.



Note that the error in computing the realizations of the
function ¢(V) on a dlgital computer is determined by the error
of rounding-off assoclated wilth the finite capacity of the. arlth‘
metic units of the digital computer, the errors of the method of
integration, and the errors associated with the incorrect selectlon
of the integration step.

To use Egq. (6.5) - (6.12), we must set wp [polynomial (6.3)
employing regression, component, dlspersion, or factor analysis.
Since a fairly large number of studies In the domestic and foreign
literature have dealt with a treatment of the latter, it is
expedient to set forth the method of stochastic approximation for
constructing the golynomlal (6.1). The method of stochastic
“approximatien /36/ is associated with stochastic experiment
planning, which In large measure meets the specifics of the
problems of investigating nonlinear stochastle processes, namely:

randomness of the factors determining the course of the
processes (5.2);

a large number of factors, where the known determinate schemes
of experiment planning are sufficiently cumbersome in the compu-
tational sense; and

ugse of digital computers for solving problems of investigation.

/213
6.2.. Methcd of Stochastic Approximation

Let ug assume that the function ¢ (V) under study is a func-
tion of the m-dimensional vector of random factors V, whose elements
obey a specified symmetrle law of distribution of f_ (V) and satisfy
the follow1ng conditions:

mathematical expectations of The random factors are equal to
zero

M =0 (=12 m), (k=0 1>|

the factors are uncorrelated random variables,
THlve] <0 (#)=12 m ]

These assumptions do net diminish the generallity of the
problem, here enabling us to obtaln simpler worklng relations.

Suppose the set {&; ineludes 2ll possible states of the elements

of vector V. Then the problem of constructing the approximating
polynomial (6.1) for the function ¢(V) can be formulated as a
probhlem Iin the optimal approximation of the function on the set
...

v
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The error 1n approximating theﬂfUnction§«¢(V) with the poly-
nomial &(V) is - '

(V) —CP(V)—*(V} (6.13) %

By virtue of the randomness of functions V, we can view the error
of approximation as random, and we can conslder the statistical
characteristics of the error as a measure of the error:

the mathematical expectation of the error

Ji=Mle] = j (V)fo(v yav; /

(6.14)
the second initial moment of the érror
Lo=M[2] = [ (V) (V)b :
] ﬁ{,, (6.15)
the second central moment
= Mi(e— M])] = J, — /" [ (6.16)

the probability that the error (V) does not execeed specified

limits [=(V)| <= |
u- Ji‘—P[] (V” Eﬂ (6 17)

where €° is the specified error of approximation.

We can present further a fairly large number of criteria for
the precision of the approximation of function ¢(V) with the poly-

nomial & (V), however, Egs. (6.14) — (6.17) are the most applicable
from the physical point of ¥iew and characterize the value of the
mathematical anticipated deviation of the error from the zero
value.

Choice of the criterion and its mathematical description in /214
analytlc investigations is always subjiect [to criticism. In.
practical problems the situation is handled much simpler, since
the physical meaning of the problem sometimes permits describing
the requirementg on the problem belng solved clearly in a mathe-
mathical sense. Three approaches to forming the criterion are
well knowniin the problem of approximating functions:

1) exact coincidence in all experiments (approximation:
nodes) ’
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2). smallest value of the sum of the.squares of the deviations
of the polynomial from the approximated function in all experi-
ments (method of least squares); and

3) minimum value of maximum déViation’oflpolynomial $(V)
on the function on the set iy (Chebyshev criterion).

Criteria (6.15) and (6.16) reflect most strongly the require-
ments on the above~formulated problem cof the optimal. approximation
of the function ¢{(V) with a polynomisal and can be related to
criteria of the precision of approximating the function ¢ (V) with
the polynomial with the welght of the probability density of the
random factors.

Let ug {ind the necesgsary conditions for a minimum of the
eriterion for the quality of the precision of approximation (6.15).

Obviously, from the condition

N aJ. , 4 . - .
. 6al.jiva0 (l’"“i‘;;’\{...\é‘i-.:],gv_-,m). f

we get the following system of algebraic equations:

! 3,]2 de

T3 =MV 5] = 0
1 Jg a )
_Q'_ff=M[E(V);§%]=0 ({=1,2,...,m)

5 L
TT:M[E(V)B?E;]:O (k<l=1,2,..., m)

~ A - —
i T M V) ] =0 E<i<v<p =L m) 16

arid so on.

The order of the system of algebraic equations (6.18) is
obviously deftermined both by the number of the random factors
V as well as by the degree of the approximating polynomial (6.1). /215
Above we have written out a system of equations for determining
the coefficients {(parameters) of a fourth-degree approximating
polynomial. Let us.expand the system of equations (6.18), by
using the above assumptions and coperations.
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[ T e . T
: = Y ({=12,...,m) |
; 32-2—’=-fu,m, (bl =12, .., m)

1 72—%— =—v00, (k<I<v=12...m)

‘l af’:h.o —vk'vt?" Ty (kélg\uﬁp =12,...,m),

(6.19)

then with reference to Eq. (6113) we can rewrite the system of

algebraic equations (6.18) in the form:
Ml —s 0] =0
Ml —zvnol=0 ¢=1,2.7 m;
mlley—s ol =0 w<r=1,2,..,

miler—s () ooul=0 (kctzv=1,2 . m:

- wllen—s e <0 rcicr =,

or T

 mpwn=mbol

Mz yo)=Mleyo) =12 m

=1,2,..., m).

We introduce the notation

P O Zi=M{z (V)

" ZM=Mls (Vv (U=1,2,..., m):
Z@ = Mg (VYD) (k<I=12,. ..,

’ Ziy= Mz (V)vpww] (A<Igv=1,2,..

24l = 1\4[';(V)v,,ﬂmm,,]; (<I<v<p=1,2,.

204

Mg (Vyom] = Mls(Vyvo) (hgti=1,2...,
Mle(V)opp]= M3 (V) oop] (h<i<y=1,2..

M {_cp(V) th'a,fu_fvp] = M '; () @kvrv\v!,] (st Lyvgp=

m);

m);

... my|

Q—w

.omy

7

. mY;

ce, my,

(6.20)

/216
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then we can wrilte the system of equations (6.20) in the form:

| o ze=mlr): |

Z=mlewyol w=1,2... m;
ZQ=Mls (Vyvgo (<t =1,2 ..., m);
Zﬁt=zw[;(vqwgme (k<I<yv=1,2,...,m);

Zkhy = M[@(V)mmvmﬁ] (EL<I<vEp=1,2,..., m)

(6.22)

¥or the criterion (6.16) represented in the form‘ff=ﬂ——§A

ﬁeﬁcan also obtain.a system of equations as follows,
to Egs. (6.22}):

._I_Q.Jﬂ..__'j__a-fa__ 011__0, :
2 day, 2 day, 1gg, — X
1 a‘]3 _ 1 ajg 0J1 _ _ .
o = T e =0 U=12...,m)
] .
! A ahH o dfy o, 00 P .
i 2 dak, - —2— (Jakz Jl ()ak[ - O (13-&__\1 = 1, 2,'. . m),

analogous

(6.23)

With reference to Egs. (6.14) and (6.18), we can transform

the system of equations (6.23) and write 1t as:
LT 3 i == L e
A4F(V)5aﬁ==A4F(VU]A1[§%];

|
|
i : de S PO N

iJM[E(V)7E;—]mJM|ffy)pw[Cyﬂj(k ,z=1fzp...m¢

.5
M [E(l!) day

Y
—
o

s

IR D o
ﬁquﬁmj=MhWHMLmﬂ (gl <ve=1,2
’ = . de - .
#”ﬂ”vbﬁwl=ﬁﬂ4vanm;ﬂ (kI <p=1,2,...

]::ﬂdk(V)pM[{%} (=19 . m|

Referring to Egs. (6.14) and (6.19), wé'bah compute:
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de . -

M) == |
T g T |
[Tt =1

d:
M[dﬂk‘r]kz_Mlvk’Uf] (k\‘\flﬂl, 2,...,”3};

e
M) = = Mpow) (ki — 12,y

‘ d:
| M[ﬂamm"""]‘“"”["’ ""zdﬂpl (e{lsivglp=1,2

see, )| (6.25)
Inserting Eq. (6. 25) into Eqs (6.24), we gefm

M{e(V)] = M[(V)];
: —ZM 4 Z M) = — M5 (Vo) +
' +M[e(V)]M[v,1 ({=1,2,.... m);

| ZW -+ ZoM o) = — M[’“ (V)’Uﬂ’k] '{“M[" (V) ]
‘ XMlve] (Rgi=1,2,...,m)

m47MhmM—uM[WMMﬂ+MEWﬂX
XMlveo] (k<Ii<v=1,2,..., m);

Lz 2o = — 0 o]+
+mle )] Mlvoms] (k<icvgp1,2 ... m). / (6.26)

We can eagily show that the first equation of system (6.26)
degenerated at identity. This means that the coefficient a.,

cannot be determined from the necesgsary conditlions that the
criterion of the precision of approximation (6.16) is optimal.
It 18 defined from the condition of the zero-ldentity of the
mathematical expectation of the approximation error jMe]=0.]

After referring to the earlier-made assumptions on the statistical
characteristics of vector v

A’Il'&-"‘ ‘]:(l {1 —t "...,m; k=0, 1}7

the system of equation (6.26) can be written as: /218

20 = mle vy, (0= 1,7 2m
78 = MleVrdml (Rei=1,2,

(6.27)
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28— 21l = w3yl - mlE ] ML = 1,2

ZS£=M[£(V)7JM&J,] (bLI<v=1,2,..., m)

280 — ZM [l] = M]3 vy o] — mlz ] mfol] (&=

=1,2...,m)
280 = Mo (ool (k<i=1,2..., m)
:

Ml MG M k<i=1,2,.. m)

!
|
\ Z — Z,M [o3) M [0f] = M[é(vwiv%’_] —
i
!
| 28 < Mz (Vyuwio] (k<t<v=1.2,. m: g

7 = Mool (k<i=1,2.. my

————

{cont)

28, = M7 (V) v, et <vgp=1,2,..,m). * (6.27)

Similar expressions can be written also for the criterion
(6.17). Let us consider the right-hand side of the first equation
of system of equations (6.22). After necessary transformations,
we will have

mlzn) = e+ N aMvl + 3 ayMlvm) +
t==1 :

1.7
(< )
m - ! i
‘ a :
+ ¥ e Mpyp]+ N e  Myyom].
i, J. v==1 i fywp=1

' (= j<Zv) U<y <y <o)

Analogous relations can be written for the right-hand sides
of the remaining equations of system (6.24). From the last
expression there follows an obvious conclusion. The right-hand
sides of system of equations (6.22) are linear functions of
the unknown coefficients of polynomial (6.1} and the statilstical
characteristics of the factors.

We introduce the vectors

Z=1Zg ZV (L=1,2,....mn 28 (E<I=1,2,...,m)...

A=lag a ({=1,2,...,m) a4 (& {=12...,m);...
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and the block matrix C of the statistical characteristics of the /219
element of vector V, of the form

- b - ' . :'+
IRTAPRIATR TR l
P R [ F— [ SRR
' H ! i H
i QHFTEQMCH.
I TP S R S ammme (uamm
! - 1 3 !
- C €31 i Cgs § €331 Cay | ,
______ [ S S I
1 1 !
1 1 H H
l Cyp 1 €ar €0y {1 Cyy
----- [ YRR PR U
| ! ! !
Ly 1 vl o i .
A= e Lol =

where ‘¢, =1; ¢, = ¢ = (M[3]}; 4 =y = (M [z’e""f] Ji o= ?Zl__jt‘(_:/.'&f["’f”f"t] Vien = (Mug)})

and so on.

Then system of equations (6.11) can be written in matrical

I - -
b Z=C4, / (6.28)

fromuwhence we can find the vector

form

A=C"'z, |
where C™T 1s the matrix that is the reciprocal of matrix C.

We note one feature of matrix C. By virtue of the above-
made assumptions on the statistical characteristics of the factors,
the matrlx includes blocks of zeroc matrices f( M[U})l(M{mvwd

5(”1[ ”ﬂ’ ]\, and so on, therefore 1t can be represented in the

form
E"Oéﬁsidi B
I R PSS P
=gV
o fofa ot
B SOOI A )
orted | j

- Denoting the'matriX'G_l'by D, and 1ts blocks by dijr we can-s
represent it in the form



............................

: :

I R R P
[ : ]

| |

|

which repeats the form of matrix C.

Computing the matrix D in general form for any degree of /220
the polynomial does not appear possiblej however, from analyzing
its form we can make conclusions that are guite important compu-
tationally speaking.

First of all, when using the Frobenius algorithms /12/ for
computing the matrlx D= Cfl, we can organize the procedure of the
guccessive inversion of the matrix consisting of four bidiocks.

Thus, for polynomials of the first degree we wlll have

f1i0
(o7 [ S
' ' 0 '5022

For polynomials of the second degree, we can use the matrix

3
[ 13
il
/"__N\
™
2o
Lo .
Tmmnple —d .
$iof
\_‘___'/I;

and so on.

The importance of this conclusion follows from the fact that
when the Frobenius algorithms are iused in computing the reciprocal
matrix. by partitioning it into blocks of smaller order, we must
compute a matrix that 1s the reciprocal of the matrix standlng in
one of the blocks. Using as such a matrix the one standing in
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block (1, 1), we can easily circumvent the process of computing
the reciprocal matrix, except'for'thé'caSe'Of‘a polynomial of
Tirst degree. Actually, this is s8¢ by virtue of the absence of
the property of complete invariance fof" the numerical values of
the coefficient with respect to the degree of the approximating
pelynomial.

Secondly, we note that the property of partial invariancé_J
of some of the coefficients of the approximating polynomials.
whose degrees (of the polynomials) differ from unity (Table 6. 3)

In Table 6.3, the identical number "asterisk" denotes the
coefficients of the approximating polynomials kthat do not change
in value when the degree of the polynomial 1s raised by one.

The property of partial invariance of the coefficients of the
approximating polynomials can be successfully used in computing
the analytic expressions assoclating the coefficlent of the
approximating polynomials, the elements of the vector V, and
the statistical characteristics of the vectors.

Table 6.3 /221

Degree. of  polynomial J]

i i FR s 1 J by G

tiy * G n g EEETY EEETE

éoeffi; }

cient

a! £ # s A HEER kb HE AR
a‘}. —_— HH Fi ks L LR R T

. — ETE T T EEEE L] EEEI T
Aijk. — "

afjk'l — _ — L2 8 EE T2 koot
' EL 2 EEE T2
ai;'kh fioki '
EEEEEEY :

a!jkfvp

Let us dwell further on deriving working formulas of this
relationship. For the moment we will assume that the elements
of vector Z are known. We will dwell below on the physical meaning
of the elements of wvector 7Z and the algorithms of their computation.

6.3.  Constructing Polynomials of First, Second, and Third Degrees

" in Stochastic Experiment Planning
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The aim of this sectlon is to Tind .an explicit relationship
between the elements of vector A (see(§. 28)), the elements of
vector Z, and the statistical characteristics of the factors.
When solving this problem for a first-degree polynomial

- TS
q,=au+i.:llai'-’f ‘\ (6.29)



we must use the first two equations of system (6.22). We will have

z,= Mz (V) ;
2P =mls vy w=12.,m). | (6.30)

After polynomial (6.29) is substituted into.éxpressions (6.30)
and the transformations are carried out, we will have the following
system of algebraic equations:

| m

i Zy=a,+ ;__111 a,M [v],

i m .
| ZP =aMlo)+ S aMvp) (1=1,2 ..., m)

or

Zy ==y,
th=aﬂ4hﬂ (/=12 ...,m), (6.31)
from whence we get expressions for computing the coefficlents: /222
a4 = Z,. (6.32)
z{
al_'m_“_ (l= 192’
e (6.33)

Thus, the preoblem of constructing first-degree polynomials
has been solved. The coefficlents a_, a; (L =1, 2, ..., m)

are eXpressed in terms of the elements of vector Z by the fairly
simple Eqs. (6.32) and (6.33).

To construct the second-degree polynomial

e=a,4+ $ a0,
“ﬂ?wﬂ%%mfj} (6.34)
{t< /)

we must use the first three equations of system (6.22):

| 7y= Mz vk
zé"=M[;gV)v,] ({=1,2 ..., m):

L

L@ =mlz(Vyoe] e<i=1,2.. . m).

(6.35)
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Substituting polynomial (6.34) into Egs. (6.35) and

out all the necessary . transformations, we can wrilte

m m -
‘ Ly =a,+ i;: ﬁiM [v] + :§—1 ayM v ‘
| ; {i<h

ZP = aM o)) +,§ aMlvy] + i ayM [voey] (E=1,2,...,m),
| = 1, j=1 '

i : (<

, Zi) = auM |v,0,] + SaMlvoml+ X ayM(voop))
; | 1, 7=1

Jj'_1
(<)

or i . m
Zo=a,+ le apM lvﬂ,

ZP =aMv}] (= 1,2, ..., m); |

1
m

7 Z5 = agM vy, +i%:l agM [vop)] (RKE=1,2, ..., m).
T )

carrying

(6.36)

From system of equations (6.36) we single out the second
equation {(which deals with the invarianée of the coeffiecients

al (1= 1, 23

., m) for the second degree of the polynomial).

The first and second equations can be represented in matrical

form (6.28), by introdueing the notation

| BRE
| o I ’
€12 1 Cp

/223
Where j; " m=1 1 - I
] bCe= (M [#i]0...0 M]|z3]0...0 ... Mv.],
m m—1 1 "'
M [UH 0 0 f M [U]J M [vg] 0 0 E :‘ M li};] M [v?n]'
. 0 Mo} M o3 0 i 0 0 0% ; 0
; 1L 1) N S ST BrS N
s mf] o L o 1 m[uf 0 o Ll M [
] 0 0 0 0 M [v3] M [ 0 0
B S T PO F R S R 0fed 0
""""" wid Ml 0 ..o im[@mfe] o o M fod,




To invert matrix C, we use the Frobenius algorithm for the /224
inversion of a block matrix:

s we get the followlng working formulas:

E H = €y — €y

f2
L 5 _( Ut e —tet, | —(H“c}'ﬂ]"‘)
U S R ____”l (6.37)

We present the necessary transformations.
'Sinceﬁ_
Ciufia =
B " m~1
(Mief])® o 0 {M[vf|M[v]] 0 0 i
0 0 ... 0] 0 0 oi
2 ____________ o 0 i 0 0 é
1= M[o3] M [ed] 0 OE(M@PO i:
5 0 0 0 | 0 a o .1
‘ m—1} | : '
| L P
L 0 000 o.of.i o
N i ':L_--------_----.--_-.-E,_____:__--_-__ ___________
o m[ M) oo fm[Em)o 0 it (m[e]P
t | N L lg 1 B i -

then the matrix H is a diagonal matrix of the form

 H=diag [ M [of] — (M[S]F, M [ M
‘:L M [wi] M [ek], mM[vf] — (M [«2))
. Mlvil M[ad), ..., Moh] — (M2
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The matrix that is the reciprocal of H obviously i1s of the form

F A~ = dia e o
] H di g{ M{u‘,‘jn(vagl)Q " om[vi M [v{‘f] ,

‘ M iw:,T M [11 Bl M’v]MIu, SR Ml"m — ‘“{"’ml ,

(6.38)
Using Eqs. (6.37) and (6.38), we can easily get /225

(6.39)

U51ng Eqs. (6.39) and matrix (6.37), let us write out the
working formulas for computing the coefflclents of regressiocon

a5 and a, | O<i=1,27..., m))
I O YCIC A PR ICE
| ao=[1+§ Aft Zﬂ”;_—r__’ (6.“‘0)
l _Zh i<j=1‘2 o 5.4
I G/ U o
= o {(6.42)
i’“'T{LL?- i=1,2...,m |

where

M=Mv] —(M[%])? =12 ...,m). (6.43)

Based on these Egs. (6.30), (6.33), (6.41), and (6.42),
can write out the working formulas for computlng the coefflclents
of the second-degree approximating polynomial:

[
1
i

? %zp'gf[n}z SEIT

+ LI
=1
j 7 |
\ a‘_—-g%[v?f (L=I,2,...,m), : (6-‘”’)"'),'
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2
M o] i) 7
4] 7

PN A EN—— L | o

i
Al

a, =

(6.44)
{(cont)

Of interest is the casé'when the statistical characteristics /226

of the factors are equal to each other. With'M[v}]=M[o*|(i=1,2,..., m)
Eqs. (6.44) vecome R o M

: .2 ) m(M-iﬂsne M2 ri}‘ ¢
sty e oy
=1 1
zM '
4= Zrmr. G=1,2... m); |

]

!

| o

1 a h_’ﬁﬁﬁﬁﬁ,£<1=l,2_”,m;
i =

| | z® M z,

Li=1,2,... m. j
"o . 1- (6.45)

Here Eq. (6.43) is of the form

y __=W{i_47[;v41 (M) ’

To construct the third-degree polynomial

~ fd Ll did
O N
o =a,+ )_I ;v + 2‘ @00+ 2 Qi jeU U
faz1 4 i=1 i =1
(i<} UEFE )]

(6.46)

we must take four equations of system (6.22):

Zo= Mz )]

z0 = mle (ol t=12,...,m),

; ZE’=M[;(V)TJ§T’;] (ki=1,2,...,m),

Z8 = M[; (V)kafu,fu,] (egigy=1,2, ...,.m).
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Since the first and third equations of this system written
above were used 1in setting up the second=degree polynomial (6.34)
and enables us to determine the coefficlents a_ and aijU§y=ﬂ.2;;;yQJ

to get the working formulas for the coefficients o (i=

2.

M),

laig, (iSi<h=1, 2...., m)| we mist use the second and fourth equations

of this system (6.22).

Let us write out the second and'fourth'equatiOns of the

system
( _ ‘2- 3 | o
Z = aM [3] +- Z apMlvpam,) (I=1,2, ..., m);
_ fjok=1
I<jg<h)
- m : m
R Tyl
_ ANES }i aM [t'w-,vmj + Z a;j M [vwv'vm X
} = i1

‘ {{eci<h

Xow] (<v<Li=1,2, ..., m). ’

/227

We can represent the resulting system of equations for con-

venience of computation in the expanded form:

' | ZP = aM ['Uﬂ + a;u M [l -+

+ 2 ay MG Mo (=1,2, ..., m);

(3
26t = aM [l] -+ M [of] +
"

—- E a’U}'M ['Uf] M[‘U‘:J (i = 1‘ 2,- vy m)

1

m

X MU M Mg i<i=12,... m);

=1

k+iz])

ZﬁﬁmﬂwhﬂMhﬂﬂﬂdJG<j<l=L2””mr

L

Z%=thﬂMhﬂ+%Mﬂﬂﬂ”ﬁiﬂwmhﬂMhﬂ+‘

+ X amMw My M| G<i=12 . my ]
k=1
(R5iv))
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|
|
|
i=1
(&)
{ 28} = a,M ] M [o5] -+ a1 [2] 2 (03] + 0y, [of) [v‘}ﬂ
|

(6.47)

(6.48)

(6.49)

(6.50)

{(6.51)



From Eg. {(6.47) let.us determine the expression for the
coefficientsa, (L =1, 2, ..., m):
1

i Zf.”—-an [Ivﬂ—-— :ml ;M [vﬂ M [UL}I
I S ol i‘fl-/‘!) ) ) _
L M |ef] ' (6.52)
and.- let us substitute it into Eq. (6.&8); We'géti /228
TIC g MEdy .,
‘ iﬁ—‘jd—[—v'ﬂ"zi' =am{M [Wi]“w}-f'
i .
+ M [’f’ﬂ! E [ai}jM [’f-’?] — ay;M [‘Uﬂ} (£=12,..., m),
! J=1 ) '
' G+ :
whence we will have the expression for computing the coefficients
23111 o o
2B T2 ___él)M 4
! @, = U [+3] . Pa o] ] (f=12,...,m), ’
. o ‘ (6.53)
where

st~ M [of] M [el] (M [o]%. | (6.54)

Substituting Egs. (6.52) into Eg. (6.49), after uncomplicated
transformations we will have the expressions for determining the

coefficients aiij'

o Zpmfdzp
‘i! a-uj-- M[‘Uﬂ Alt (l %éj = 1v2|-" 'y m)' (6-55)

Using algorithms (6.53) and (6.55) and Eq. (6.52), we get
the working formula for computing the coefficients

L2l zm) T
FoMfd] 8}
_ 1 oy M [v3] 28 .
TR o TR e
7 U;h (6.56)
where S -
o MMy (e
\ Ai Al
: 7~ (6.57)
SN '
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And, finally, from Eq. (6.50) it follows that .

Vo zZ{ e
I e

(6.58)

Based on the resulti%g Eqs (6 HO) (6 56), (6 41y, (6.42),
(6.43), (6.55), and (6.58) we can write out working formulas for

computlng the coefflcients of the approximating polynomial of /229
third degree: _

b
T CICAD N0
R S
Pe=1 t=1
zhaf  zfm[of] R o B | [ |
CUER T T A WR e e
(j+#i)
i

(6.59)

ai-z "n
| Zg)—?e[w]z",t=l,2,- , m;
1
Gy M2 11 Z(1)
\ Zal [t,inM[v]Z =12, ;s
2
[ N e e -
| Q= G , E<ji=12,..., m)
| zf) el 1a
] A G A )

For equal statistical characteristics of the factors, Eqs.
(6.59) become as follows for the coefficients of the third-degree

polynomigl:
M[2 =
[1+- S JZr—i%?izszﬁ;
i=1
_ 82 28M[t] | m
& =t — 5 _7172 VA, (i-—l?...,m);
Fe=
20 (S #1)
2 = [ (M[v~])2 (£<J—']-2- .. );
- | zp—mlo*] z, |
-__'_T"—_"‘. (i=_f=1,2,..,,ﬂ‘l); | (6.60)
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| { z,f?g_m[v:iquzgn L 12
D sy
| (wﬁfh'(“f =12, m). __fjﬁ Egéggg
Here Eqs. (6. 5&3‘;;5—Eé_gf)—£;;6ﬁ;--_7_” /230
A= M[w M) -—(M[w*] X
: Sy = M'ﬁ“l-"’”"‘lﬂu T (Mlvl) (6.61)

Thus, for polynomials of the first (6. 29) second (6.34),
and third (6.44) degrees, we have obtalned working formulas for
computing the coeff1c1ents that relate elements of the vector V
and the statistical characteristics of the vectors. Working
formula (6.59) are considerably simplified for the case of equal
statistical characteristics of factors, as follows from Eqs. (6.60).

Thus, we have obtalned working formulas for computing the
coefficlents of the third-degree approximating polynomials. They
are quite simple, especially for identical statistical charac-
teristics of the factors.

The case of polynomials of higher degree is also of interest
for practice, however the cumbersomeness of this procedure does
not enable us to derive the corresponding working formulas for
polynomials of degree higher than the third. 0f the stochastic
schemes of experiment planning are the set S?V, we can single out

two schemes that satisfy the assumptions made at the beginning of
this chapter:

the scheme with normal distribution of experiments on the
set SIV, and

the scheme with uniform plstrlbutlon of experiments on the
set Q

Both schemes can be used in practical calculations, therefore,
by using the above-presented formulas for the general case of
stochastic experiment planning, we can derive working formulas
for computing the coefficients of the approximating polynomials
for the schemes of normal and uniform experiment planning on the
specified set SZ

219



6.4, Precision of Approximation in Stoehzstic Experiment Planning

Above we obtained working formulas for computing the coeffi-
cients of approximating polynomial. (6.1) that relate the statistical
characteristics of factors to the elements of vector Z. Let us
find the error of the stochastic approximation for a specified
distribution of the probability density of factors. We can write
the expression in the form

a=ﬂu¢wn—wdﬂm£Wﬂ+MH%T£] 6.62)

for the criterion (6.15).after transformations.

Let us obtain working formulas for computing the eriterion /231

(6.62) in particular cases. For the first-degree polynomial
(6.29),Eq. (6.62) becomes

J(l) =M [?3 (V)]—— 2%30 .

a:Z" +al + E a;M ["a;o']

=1

o
W

(6.63)

Substituting Egs. (6.32) and (6.33) for the coefficients a
and a; into Eq. (6.100), we will have

o e -
I = Migr( V)]—?Q—Ef[vg] . J

o]

t=1 (6.64)
For second-degree polynomial (6.34), Eg. (6.62)} can be
represented in the form
Jé2) =M [?z(y)] — 93,7, — 2 Zaiz(l)_'_
=2 3 a2 a2 Y aM o 4 X, el [of] +
! %?? P =t
| - Sampol+ 3 oM o7 +
) =1 Il j=1
: L;}
) m
+2 X agaM 9] M.
8 5=1 .
< j)
' (6.65)
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Substituting into Eq {(6.65) Eqs. {(6.44) for the coefficlents
8gs 855 and a, 19 ﬁ<Q~4 9 ,,m” and carrylng out the transformations,

we‘get
1 h —_
m ( 2

0=l w) - 3 KU ) S

I- M[w] 4;—1M le

! (f <ﬁ1)

- "a')Zn + a{l 2 anauM TJ'; +(Z”M [ }
~ 20,217 42 \‘ aua;,M ['ZJ;[M['U,{
.... - ) ‘ :1 f:_Jfll
which can lead to the form o /232
L - "m nt
: o . _ Zih)2 Zi02 |
A Z—,E, i~ 2 TR AT
| FE-5 ! Pyr-s S !
: <
i (z@)2 2712 2
: — E l . ‘[;'f“ Zg_zozﬁi MI:"EJ ] o
f =1 !
| vy M [0l M _ ,
) LAJEATU“[M [of] 25 — 1 [ 2871 - 2.
’ =1 ! (6.66)
i< i) . . N L

for the normalized vector V, Eg. (6.66) is simplified and
is of the Tform

@ _ 4 2 i
s9 = [ (V)] - e 2 (20~ T 2 (Z5) —
= =1

@<

__;_g ZD) (H—m (M[v])2)23+

S s e §
B e P
| np- 2 (6.67)

¥
We can similarly obtain expressions for computing the error

of the stochastic approximation for higher degrees of the approxi-
mating polynomial.
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‘6{5-"ComputatianOf Estimates of Moments Z -

In the stochastic apprdximation'of'the fﬁnction‘tﬁ(V) with
a polynomial of the form (6.1), the statlstical characteristics
of the function :
A =Ml Vvl ZH = Mz (V)va),... | (6.68)

Were introduced into consideration.

The exact computation of the moments Zo, Z{”, Z%,...lfor a non-

linear model of the process having the form (5.2) is impossible
in practice. Therefore it appears useful to employ estimates of
the moments Z computed with approximate methods of statistical
analysis of nonlinear systems, for example, the méthod of statis-
tical tests.

If the sequence (5.78) is constructed for a random Vecﬁpr
and if for 1t the sequence of functions

L, | (6.69)
is computed, the computation of the estimates of moments (6.68) /233
can be done by employing formulas from the method of statistical
tests:

@)=z ully =5 S WO =12, my;
YEW 2
(20) = (s vyom) )y = L (20),_, +

L ) vy (v
e b Vg, J

(6.70)

Similar formulas can be written for computing the estimates
of the introduced moments of higher degree by using the method of
statistical tests.

We can easily see that computing the estimates of moment
(6.68) and the initlal moment M[¢(V)]] of the function (V) can

make use of the same sequences (5.78) and (6.69).
Here the sequence (5.78) can bé'conStructéd in digital

computers employing standard programs of randém numbers with
assigned density of the probability distribution.
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Example 6.1. As an illustration of the method of stochastic
approximation, let us look at an example of 1nvestigating the
effect of random perturbatlons (elements of a canonical expansicn
of 'the random components of ! air )densityj in a process of the descent
made by a flight vehicle in the dense atmospheric layers of the
earth described by nonlinear equations from /13/+:

|

? e — Ko ¢ i

? = T COSs (ka = 0,028),

! . . 2
x =V cosf; y ==V sinl; k:f:y—-%;

L el

(6.1.1)

The symbols used in“se%tnxgup JEq. (6.1.1) are given in example
(5.1). ' ’

Let us consider as the perturbation the normalized random
component of the deviation of atmospheric density from the standard
po(h), which we specify in the form of a segment of a Fourier

series (see Chapter Four) with random coeffleients

G
iAH“*EJ%M%HNWU+UM+%%NMHWW%
=

! _ m:=940“4fl-),

¥
v

where B (i=1,2 .. 13| are weighting coefficients given in Table 6.4.

Tabhle 6.4
T 3 4 5 6
EDERE 0.60 0,46 0,31 0,20 0,19 0,17

..... T R L U I
Cee e G906 030 0,21 0,19 01T

The numerical value of the normalizing cofactor u(h) used 234
in the numerical calculations 1s given in Table 6.5.

Table 6.5
R ke .. 05 0 1 2 .3 5 7 10
| w0 078 3263 2000 1,428 1,010 0,650 0,600 0,610
Cp o km oo 15 20, 25 30 35 400 45. 50
| op(r) 100 7915 2010 2703 0,928 0,504 0,509 0,179 0,110 ' r-

223



We will assume that the characteristics of the random
factors are assigned and are equal to

. M[U[' == {); M{Ui,ﬂj]l_{

.-
o;=1

0

for 1 = 3,

for 1 # J.

The investigation was conducted for the deviation of the
coordinate x of the perturbing motion from the.£{]value in
unperturbed motion (Ap = 0) at the altitude h = 100 m for the
following initial conditions of the system of equations (6.1.1}):
v, = 7850 m/c; 8, = -5°; y, = 50 ¥m; and x, = 0.

The statistical characteristics of the quantity Ax (h = 100 m)
obtained by the method of statistical _ tests for N = 150 are equal
to M /Ax# = 100 m; o2 /Ax/ = 6.2:100 m2. The numerical values
of the moment of the first 7Z(1) and second Z'2) order computed by
Eq. (6.70) are given in Table 6.6} Alsoc presented there are the
numerical values of the ccefficlents 8> ay and R

Table 6.6
, e
. i
7
| vl sl ey s e s s e w| u]| 2| s
:F 1 [1032!-506!-407| 170 |-910 |-104 (—431 ;- 745{-260| 8| 200 71--246( 244
| 2 —296| 617| 396| 531 - 50159 4|-130| 441| 1201 83| ~-11| 73§
3 340 225 305{ Qb 2001137 275 ~15[—149| 30} 561 531
P4 416|686 |-164 | 11| -38[-328| 771152 -25|-150| --29
5 960 1791 79 |-188|—245|-169 (112 (1137 404 202}
. 6 261 432 -112| —60 7|-257 5277 | =72}
b7 306 | 237( 190 136|-303 |-253| —G9[-128
. 8 204| —79|-176| -32| 2461-139| -78
P9 : 234 421110 397 81 7l
© 10 566| 73| 52) 99 65 L
11 21181170, =71 §
12 2361 168 -75
L3 1s| 68 |
| 14 -100
: ay | 466(—198| 1200 158§ 430 -37) 103| B2[-167| 233| —56] 68i—108; —100
@y [21831-714] 1046] 423 | 305 ] 142{—174 |-322|-107 | —15!-261 | ~19; 100] -48

Table 6.1 shows the convergence of the coefficients a; (1 =

=1, 2, ..., m) as a functlon of the number N defining the number
of the sequence (5.78).

From an analysis of the results. it follows. that tThe conver-
gence of the method of statistical tests, when estimates of the
vector Z are being determined, is quite high for the essentlal
random factors. Estimates of the vector Z converge somewhat .
worse for factors that have 1little effect on the scatter of the
phase coordinate AX.
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The calculations were made on a M-220 digital computer and
affiord the conclusions that individual random factors affect the
scatter of the coordinate Ax and the necesslty of including them
when carrying out investigations for a given class of processes.
Table 6.7 gilves the numerical values of the contributions made by
the Tirst four linear terms of the expansion, along with the
numerical value of the dispersion of ccoordinate ‘Ax in absclute
values and in percenbtages.

The data of Tableées /235
6.6 and 6.7 show that
—————— —— T T T e e T T —— the first four random .
— factors in a linear medeil
° | determlne with a precision
- up to 0.5 percent the

a;

[~ ——— ———— e st e
g JOOI— = = e —

T e —— -z} dispersion of the coor-
; s S~ dinate Ax. The remaining
r < T~ random factors have virtually
} ~  —— 5, |70 affect on the descent of
! S ——— ———— e _ " Y the flight vehicle described

| ‘@@ | by Egs. (6.1.1).

T[] it sy, e . e, e S . s el e

\

1 =T T T ——— T T,
o™

4 ¥
' - .-.""-Q- ‘am
! _200 1 g 1 ¢ [ — 1 Ve
i 124 125 125 77 128 129 BeSN, BSN
| e

Fig. 6.1. Variation of coordinates in
ai(t) (L =1, 2, ..., 14) as a function

®f the numbers of sample elements.

Table 6.7 B
—— g Tt ;
a‘f - 108 4,75 0,49 1,09 0,176 e . g s
o)
r

' m% 76,6 7.9 17_6 2,8 LI
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CHAPTER SEVEN /236

NUMERICAL OPTIMIZATION OF CONTROL ALGORITHMS
FOR FLIGHT VEHICLE MOTION

The above-examined problems of the scatter of kinematic
parameters of the trajectories of flight vehicles in the dense
atmospheriec layers are a constituent part of processes in the
statistical optimization of control parameters of their motion.

Examples 5.1 and 5.2 examined linear control algorithms
providing compensation for deviaticens of kinematlec parameters
of flight wvehicle motlion from thelr reference values. In
principle, the algorithms can also be nonlinear functions of
fthe mismatches of phase ccoordlnates X. The problem of syntheZ
sizing the structure and the parameters of the algorithm of the
AU(X) can be formulated as a variational problem /43, 59, 74/,
of minimizing some speciflied quality criterion /19 32 33, E3,
67, 79/ when there are relations in the form of dlfferential
equations {(5.2).

However, in most practical problems of the control of flight
vehicle motion it is not possible to sclve the preblem of synthe-
sizing the control algorithms (the problem of determining the
optimal structure and parameters of control actlions)} by employing
necessary_ and sufficient conditions for the optimality of func-
tliconals /TH/ owing to the complexity or cumbersomeness of the
¥nown formalizations. Usually, by employing formalizations of
variational metheds we can only indicate the class of funetions
tdfw@mch the sftructure of optimal contrél belongs.

Among the practical problems of control, by. virtue of the
specificity of control processes and actuating devices of control
systems, or the state of technology in realizing optimal controls,
the class of functions in which one seeks the optimal control is



restricted. Therefore, one widely used approach to setting up
control algorithms that are satilsfactory In practice_is the .
approach based on direct methods of -solution /#3, 59/. Essentially,
the latter amounts to the following. A class-of unknown functions = /23
(dependences of control actions on mismatches of process. phase
states) wholly defined by a finite set of parameters (coefficients)
is specified, and the numerical values of Bhe parameters (coeffi-
cients) are calculated from the condition that an | extremal

value of the criterion of process control 1s ensured on an
admissible set of the parameters sought for, = Mathematically,

these problems are formulated thusly.

Problem 7.1. It is reguired to find an extremum (for sake
of definiteness, we will assume the minimum) of the quality
criterion

Y IC A (7.1)

on an open set SZK of parameters kl’ kZ’ ey ks’ if the quality

criterion (Y.I)His computed for solutions to the sgystem of
differential equations

: X =S (X1, Kayoon, X, Baty, Bats, Lo, Any By B,
rxg(to) =%,05 (A£'=1_1,2,..7,n). 7

1]

(7.2)

and if the controlsAu, Au,..;Aus, are defined by the functions!:
CAuy = A (A (), hy E=1,2,. ., L= 12, ., s | (7.3)

In the formulated problem 7.1, the guality criterion is
usually specified in the form

Ty Ry ) = M@ (M (8), Ay, by £ =12, n:
! F=12 ., ni=12..s],

L ) o ' ) ’ (7 - u)
since the solutions to Egs. (7.2) are stochastic by virtue of the
randomness of perturbations &), &), ..., tu(f)]

Problem 7.2. It is required to find the extremum of the
quality ceriterion (7.1) on a closed set SIK of parameters kl’
Koy vvns k, 1f the quallty criterion is computed by Eq. (7.4)
for solutions to the system of nonlinear differential eguations
(7.2), and if the controls are specilfied in the form (7.3).
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The get QK,is ﬁsually assigned as the intersection of two
sets ol and ‘@@ defined as follows. The set of)|is a set of para-

meters k., k., ..., k definéd by constraints of the form:
1 27 5
K<:K K, J (7.5)
where K =gfkﬁ@#::’kﬁ} is the s—dlmensional vector of the (opti-

mized) parameters sought for; and.ﬁ, K are vectors of the numerical
values defining the range of variation of the parameters being
optimized.

The setrggv is specifled by constraints of the form:

Q(qu Tye s )<Q (7.6)

where QO is the l-dimensional vector of the assigned numerical
value; Q is the l-dimensional vector of the assigned functions
of ‘the parameters being optimized.

The funetions Qj(k s 1 =1, 2, ..., 8) are computed for the /238

solutions fto the system of differential equatlons (7.2) and are
specified in the form

QUK) = MG (Ax, Ay, k), i= 1,2, ms =1, 2o i ]
z=1,2,...,s1. |
S T e (7.7

Thus, in preoblems of optimizing control systems of dynamic
processes, the quality driterion €7.4) and the constraint (7.7)
are computed in the general case for solutions of nonlinear sto-
chastic differential equations, which naturally leads to the
impliecit dependence of the guality criterion (7.1) and the con-
straints (7.6) on the parameters (of vector K) being optimized.

Therefore it does not appear posslible In advance to indicate
or determine the class of functions to which these functilonsg I(K)
and Q(X) belong. One can only note that problem ’7.1) 1s in the
class of problems of searching for an extremum of an implicit
funetion of many variables. Problem 7.2 is in the class of prob-
lems of nonlinear programming with a nonlinear dependence on the
parameters being optimized of both the control criterion 7.1
as well as of constraints (7.6).
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7.2. Methods of Searching for Extremum of Funetions of Many
Variables

. There are a considerable number of methods, algorithms, and
procedures for solving the problem of searching for an extremum
of functlions of many variables both with /37/ and without allowance
for constraints /61, 71/. Most of these are based on certaln
hypotheses about the sTructure of function I(K). One of the
widely used is the hypothesis that states that the function being

optimized is unimodal on the set of parameters QK' Essentially,

the assumptlion that the quality eriterion I(K) is unimodal cannot
be validated in problems 7.1 and 7.2 without a preliminary study
of the function being optimized by computing the quality criterion
at a number of points on the set S)K. The process of computing

the quality criterion for a specified numerical value of vector K
will be referred to as an experiment.

The methods of searching for an extremum of the quality
criterion I(K) must take into account the absence of a priori
information on the structure funetion under study, its unimodality,
uniqueness, or polyextremality, and so on. Also, in algorithms
for optimizing the quality criterion I(K), no small role is played
by methods of computing the possible errors in carrylng out the
experiment (in computing the quality criterion by analytic methods
or by numerical methods employing analog or digital computers).

Summing up the materlal on searching for an extremum of
functions of many varlables, we can present a classification,
given in Fig. 7.1, that is convenient in setting forth the methods
and algorlithms of numerical optimization. Under this proposed _
eclassification, all methods of searching for an extremum of func- /239
tionas of many variables can be divided into three large groups:

1) methods of random search;
2} determinate iterative methods of search; and

3) combined methods merging determinate methods with random
gearch.

As applied to the present class of problems under study, methods
of random search are most préferable by virtue of the absence of
a priori information about the function being optimized. However,
the fairly large number of experiments by which the extremum of
the function optimized is attained casts doubt on the applicability
of these methods in practical problems of optimizing control

processes.
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Determinate iterative methods permit reducing to the minimum
the number of experiments when searching for an extremum of a
specified function. The absence of a prilori information about
the mono-extremality of the function under study does not enable
us to state that the optimum found is absolute.

The distinguishing feature of determinate iterative methods
is the fact that in searching for a local extremum of function
I(X), one selects the initial point K = K(C) in the space of
parameters K" Different methods of studying the behavior of

the funetion I(K) in the neighborhood of polnt K = K(O) and the
depth of this searth also essentially underly all methods and

algorithms of determinate search. Thesge features also are the
basis for the classification of determinate methods (Fig. 7.1).

Te elarify the problem of the unigueness of the extremum
of a function I(K) on the set of parameters SEK found by means

of determinate methods of search, we can usedtwo types of zlgo-
rithms. One is aBsociated with the determinate subdivigion of
the set SEK into the subsets @(j , (J =1, 2, ..., N) belonging

toc the set S%P and the search of the extremum in each of the sub-
seéts. The second apprcach can be assgociated with combining the
methods of determinate search and random selection of the initial

peint K = K(O), with the setting up of bounds to the subset of
parameters uﬂj) under study in order to execlude it from further
investigation.

fmong the determinate methods of search we can single out
four groups of methods differing in the depth of the search of
the structure of the quality criterion I(K):

screening methods;
' Gauss-Seidell method;

methods based on the local representation of the guality
criterion by approximating hypersurfaces of specified order; and

methods associated with approximating the guality criterion
on a preselected subset of parameters being optimized by approxi-
mating hypersurfaces cof specified order.

.
Lo
P

Screening methods 1nvolve‘(51ngling out on a set SZ he

parameters of a series of points at which an experiment 1s con-
ducted. Comparing the numerical values of the guality criterion
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Fig. 7.1, Classification of methods of searching for extremum functions
of many variables.
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[Key to Fig. 7.1 on preceding pagel]-

1.

17.

18.

19.
20.

!

Methods of seafching for extremum of functions of many
variables

Random search

PDeterminate methods of search

i Combination methods of search

Method of screening

Gauss-Seidel method

Methods of local approximation

Method of approximating polynomials

Determinate orlentation with random search along 1t
Methods of search for extremum of function of‘one variable
Algorithms without "memory"

Algorithms with "memory

Random orilentation with determinate search along it
Methods based on constructing a hyperplane

Methods based on constructing second-order hypersurfaces

Methods based on constructing hypersurfaces of order higher
than two

Random search with successive approximation df results by
hypersurfaces

Method of steepest descent
Method of gradient

Methed of differential equations



I(X) #n each of the experiments makes it possible to single out
at least a subset of parameters where the extremum sought for is
found. This statement is evidently valid for the class of uni-
modal functions. The effectiveness of screening methods for the
case of an arbitrary class of a function being optimiged is
considerably reduced, since in thils case we can significantly
increase the number of nodes on the subset SQK of parameters at

which it is necessary to conduct an experiment. Since the bounds
of the set QK in problem 7.1 usually are not exactly defined,

screening methods involve a considerable number of experiments
and their present applicatlon ig scarcely advisable. It .should
be noted that in some polyextremal /problems in which extrema of

identical values of I(K) are present, screening methods can be
the only methods of determining all extrema.

The Gauss-Segidel method involves investigating the quality
criterion in the plane of a single parameter ki for fixed numefical

values of the remaining parameters of the elements of vector K

The advantage of the Gauss- Shldel method over the screening methods
lies in the investigation of the structure of the quality criterion
in the plane of a single parameterg;since 1t reduces the process of
multiparametrlc optimization to uniparametric, that is, to searching .
for an' xtremum of the function of a single variable, and involves
two algorithms.

The first of these requires knowledge of the range of variation
offeach parameter being optimlzed, that isg, the bounds of set Q.

Here, for a specified set Qﬁf we investigate by means of the

sereening method a croess section of the quality criterion: we
find that the nature of the function in this cross section,
determine the number of extrema, and so on. In the second case,

(o)_

we use search algorithms from the initial point k A specific

local extremum is employed as a flrst approx1matlon in the para-
meter ki when investigating the function for the other parameters.

Usually, the Gauss—Skldel method is used when there is a small
number of parameters being optimized (s < 5). The applicability
of the Gauss—Se1del method for a larger riumber of parameters
involves a considerable number of experiments and when the cost
ol each experiment is high can scarcely be justified.

Considerable acceptance as search methods has been gained
by algorithms involving a local approximation of the function
under study with hypersurfaces of specified order in a small
neighborhood selected as the 1nitial approximation of the wvector

K = K(D) Essentially, this group of methods and algorithms
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involves studylng the structure of the quality ecriterion only in

the ¢-neighborhood of the initial approximation of vector K(O)
In turn, the difference between algorithms and method involving /242

local approximation of the quality criterion lies in the depth

to which the behavior of the quality criterion is studied in the
e-heighborhood of the space of parameters of k(0), We can single

out three groups of algorithms that share commongapproaches to

the search process:

1) methods of constructing a hyperplane in the space of
-parameters’ QK passing through the point K

2) methods of constructing a hypersurface of second order

passing through the poilnt K(O); and

3) methods of constructing a hypersurface higher than the

second order passing through the point K(D)

The g;gédiency {of this subdivision involves algorithmsﬁfoﬂ
employing the information obtained on the behavior of the optimized
function in the neighborhood of point k(0). This group of methods
shares the fact that at the point K = k(0) a Taylor series of the

form - —
@ 4 ) N _8L_( 70 ”
| Flr® 1 8K) = F(xc );1—,‘,;(1( ) ak; 4
| , .
1 ﬁ Ik . 1 . 0'1 (k™
! AbAL - 1 1(k9)
l+ 7T R dy ”E Ok Iey . OF,
ﬂ X ARAE, 2
i | (7.8)
where

Ak£:= kt —‘—k?’“‘ . ’

can be constructed.

Obviously, constructing the series (7.8) when it has a fairly
large number of terms invelves a large number of experiments or
cumbersome calculaticons in computing the partial derivatives:

Coa e Ter T T o 7
- OR,Y Okiok) TORQROE, (</<voo=12,...,5).
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Use of the llnear portlon of series (7.8) in the form

‘ (K(n)-]- Af\) 7(&O + o 07 KO A, '
H _( ) f@,dk( ) (7.9)

enables us to establish only the direction in the space of para-
meters £, in which the quality criterion I(K) is deecreased.

To search for an extremum in this direction we can use familiar
methods and algorithms (Fig. 7.2):

the method of steepest descent; and

the methed of principal components of the gradient, r’ and other

methods that reduce the problem of the multiparametric approach
to a problem of uniparametric search for an extremum of functions
along the direction of the gradient of the quallty criterion at

at the point K = (0).

Use of the quadratic model /36/ for the criterion, when there /244
are three terms in the series (7.8

?I:l((o) _%A/\’) = l(]/(f])) + E (){_(K(n))[
o 1

> }
o FHEY) oy,

(7.10)

sclves the problem of searching for the gradlent and deftermining
the sizge of the step in the parameter space.

Necessary conditions for the minimum of Eq. (7.10) yileld a
system of llnear algebraic equatlions for determining the magnhitude
of the new approximation of vector K in the parameter space QK;

06+ 3 F o)~ | (7.12)
- , 7.11

And, finally, nonlinear models of the quality criterion in
which the number of terms in the serles (7.8) is larger than three
yleld a fuller representation of the behavior of function TI(K)

(0)

in the e¢-neighborhood of the point K = K s, however their use
does not afford as effective an algorithm for searching for the
new approximation to the vector K in the parameter space QK as

the second-degree expansion (7.10). To gearch for the vector of
parameters in the next approximation it is required to use either
the method of differential equations, or methods of searching for
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Fig. 7.2, Classification of methods of searching for extremum of functions
of a single variable.
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/Key to Flg. 7.2 on preceding page./
1.. Methods! of search for extremum of functions of one variable
5 ,

. Random search
Determinate methods
Method of purposeful screening

3
i
5. Methods of analyzing segments pf indeterminacies
6. Methods of quadratic polynomials

7

Méuxﬁgfof approximating functions by curves with order higher
than two

8. Method of dichotomy

9. Method of golden meanh

10. Method of Fibonnacgi

11. Newton's method

12. Method of parabolas

13. Method of quadratic approximation

14, Methdd of differential equatlons

an extremum of a function of parameters being optimized, assigned
in explicit form. The method of differential equations essentially
l1s a method of steepegt descent with a small step and consists of
searching for a steady function described by the differential
equations

Yak, AT ] B
g Thgy =129, —l

where I is the model of'the'Quagity criterion and Ai are the

(7.12)

coefficients of prapbrtidhality.

Solution of equation (7.12) on a digital computer does not
pose serious difficulties, therefore in principle nonlinear medels
higher fthan the second degree can be used in searching for an
extremum of a function of many variables if thelr construction is
possible.
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L
‘mating the criterion on a set w

We must at once note that success in the procedure of searching
for an extremum of functions of many variables using local nonlinear
models depends to a large extent on the ¢leanness with which experi-
ments are carried out in determining the partial derivatives of the
expansion (7.8).

4 second feature in the application of methods of local approxi-
mation is the requirement thattthe function I(K) be unimodal, since
the presence even of minor high-frequency oscillatory components /245
in the function being optimized leads to instabillity of the
extremum search algorithm.

We can sidestep the disadvantages of search methoeds involving
local approximation of a function by employing a group of methods
inyolving approximation of the function I(K)} on a specified set

w(J)

A difference between the methods of searchilng involving approxi-

() A

from the method of searching
involving local approximation of the criterion in the ¢-neighborhood

of the point k'O is the fact that in this case, instead of the (o
expansion (7.8) of function I(K) in the neighborhood of point K s
we set up a problem of the optimal approximation of function I(K)

~ § &
[=a,+ ¥ adb,+ ¥ aydkdk;
i=1 i, j=I1
u<h

from the condltion that the smallest value is ensured, for example,
the integral quadratic errcr of a similar representation

(7.13)

J'="'f S (AK)YdAK,

wbf)

(7.14)

where

’ :(AK) = 1 (AK) — 7 (AK). ﬁ! (7.15)

As to the remalning features, methods of solving the problem
of searching for an extremum of a function I(K) based on its meodel

f(K) are analogous to those presented above when leocal approximations

with linear and nonlinear models of the quality criterion are used.
The problem of the necesslity of the singling qut methods of

approximating the function I(XK) by the polynomlal I(X} on the set

w(a) into a separate group cof methods can arise. It 1s difficult
to respond uniquely to this question. On the one hand, computational



- aspects of this group of methods differ appreciably from the com-
putational aspects of local-approximation methods. In the first
tase, in constructing the series (7.8) we can use elther functions
of the sensitivity of the quality criterion with respect to the
parameters beling optimized [50], or formulas of differences for
approximate computation of partial derivatives. 1In the second
case, the principal apparatus for constructing the optimizing
polynomials 1s the method of least squares (integral or pointwise),
solving both the problem of computing the required regression co-
efficlents of polynomlals (7.13), as well as the problem of
smoothing the "irregularities" of the funetion I(K).

In addition to this difference, methods of approximating
polynomials enable us to use to its full extrent the "pre-
history" of the extremum search process, which cannot be said of
local-approximation methods. These algorithms cannot be employed in
local-approximation methods. The differences listed are fairly
essential in order to single out the method of approximating /246
Polynomlals into a separate group of extremum search methods.

On the other hand, in either case we are dealing with the
approximate representation of the quality criterion by Taylor
series (7.8) or by approximating polynomial (7.13) which do not
differ 1ln form from each other.. This form similarity of repre-
sentation (7.8) and (7.13) differing in content can raise an
objection when the methods of the approximating polynomials
are placed in a separate group of methods. Since the presen-
tation of methods and algorithms under this classification is
more preferable, we can adopt the solution of extending to the
methods of approximating polynomials autonomy in the classifi-
cation of methods of searching for an extremum of functions of
many variables.

7.3. Methods of Computing Partial Derivatives for Statistical
Characteristiecs of Stochastic Processes

When stochastic processes described by the following nonlinear
equations are optimized:

"%szl(xil Xy "y xru t- klf k?‘?""l k.s, '011 U, .. 'v‘vm):
X i) =%, (E=12,...,.0) ¢t ['fu, T,

e (716) e

one of the serlous problems of a computational nature is the
problem of computing partial derivatives of Taylor series (7.8)
for the criterion I(K) being optimized.
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Lo
where (3)’2[ ' dkc?k

Generally quality criteria can be of two tTypes

(7.17)
(7.18)

i T :

J’ I =M [s M (x,, t)dt],
‘ L - .
{ = M{®(x,, TY].

Let us determine the partial derivatives of criteria (7.17)
and (7.18) based on control parameters k

1> Kos eees kgoo We will

! T n

: ._QILH. 00 dx _—‘
(S5 (7.19)
| =1

o] I RN SRR (7.20)
Ok - dx; Ok ok, T 2

Lo, _ TN o ax 0% 20

.‘dkldkv - MLY {iEl dxx; Ok; Ok Ok ok ok, +

) . - Jo-

| M Py

; LN o | g,

't lel f)\’j a!f().k (7.21)
, 024, ¢ b Ay, 04 W

e | YT Rl e

oK, M { (| T ()k; T argR, T

i ‘ _

: N\ Py .

| + .\_a ax; Ok B, J (I<ve=12,...9), (7.22)
| =1 ¢
b o S

are the partlial derivatives of the solutions to

nonllnearastochastic equations (7.16).

To computeﬂthe partlal derivatives of the first ordergng‘

—
second order Ldkdk , and higher orders for solutions to nonlinear

equation (7. 16), we can make use of the differential eguaticns of.
sensitivity.

tivity of first order for Eqs. (7.16) 1s of the form

& X

Thus, the system of differential equations of sensi—§

| 40y N Wﬁdﬂ
i f(dk.[)_' lé‘x (ch‘[

| Ox 7} ;
\_Eé(%)=(?ﬁju(;==Lz.“,n (7.23)

S~
n
=
-

|



The second-order partial derivatives for solutions of non-
linear equations can be computed using the following system of
differential equations

Fx;(f) ofi 63xj 0,
(dkaﬁ )= 2 2w oRoE, T omar, Tt

n
&f 5.?_,- dx, . .
_1_ E ﬂxﬂxp HJE-;J_E: (!,V: ]’2""’3)1 ([= 112’ -"o”

(7.24)

Systems of differential equatlons for determining partial
derivatives of higher order can be set up based on an algorithm
that 1s analogous to the one described above.

Introducing the notation

I . - .
! ax; ,
| wi(t) = ’d‘fk(f’ (i=12,...,m{=12,.. s)

ex; (1) . . '
g “"pr(f ‘]E;j?ﬁ\:’_ (Jo’lz 1,2,....,3; b= 1\21"'1”’)1

L L (7.25)

systems of equations (7.23) and (7.24) can be represented in the /248
following form:

{w.r(t) U(t)w;,-# 3 (t) (i=12,...,2), (I=12 ...

)—-I

W} (£) = Ea-s,»wu%» 2 bhowle? 4+ 8.8y (i=12,... n

i=1 o i=1

7 Lv=12...,5), (7.26)
where we use the notation
i Rty
a /R U/
1= fh’j v Ve ﬁxjax
s Of 0
= ok, o= akdk (7 27)

If the initial systems of equatlons (7.16) do not depend on
the parameters kl’ k2, """ks’ the initial conditions of systems
of equations (7.26) are zero:

Wit =wh(t) =0 ( ;Té' o), ;';12 —)J
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Has. (7.27) are random functions of the perturblng actions,
therefore systems of equations (7.26) constitute a system of
stochastic equations.

Substituting the notation (7.25) into Egqs. (7.19) - (7.22),

we get
; -
Y T 00 oD (f
SRV FPRMPHY PR
0 {i==1 .
ar. — 0D i 90(T
o=l 3G x,we(m-;éi ’] (=12, 8);
r no- 7
a K 0 apu)
e = M|} [ axdx; w} (£) (1) + 7 on, T
&y o U, j=1
+ 3 Skt (r)” Gy =12, )
i=1 .
g Ph__prf B E2D i Tyl (T) + e
Ok Ok, - ’E dxx; dkﬁk
=T
+ Y 58 @) | = 12,09)
i=1 -
(7.28)
By integrating system of differential equations (7.16) /249

jointly with systems of differential sensitivity equations (7.26)
for the specified realizations of the vector of random factors,
we can ¢obtain the realizations of solutlons Xy (t, V) and the

realizations of sensitivity functions w }(t V) and Wﬂu (t, V).

Treating the necessary number of realizations of these func-
tions by one of the methods of the statistical analysis of non-
linear systems of eguations, by Eg. (7.28) we can compute the
required partial derivatives of the mathematical expectations
of the function ¢ under study or the integral of it {o set up
Taylor series (7.8),

As 5 whole, use of differentisl sensitivity equations is
quite an effective procedure, however several difficulties can
crop Up in 1lts realization.

First of all, to get the differential sensitivity equations
we must do a great deal of preliminary work. Secondly, differential
sensitivity equations have a2 high system order.
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Tables 7.1 and 7.2 give the numerical values of the order of
the system NY for sensitivity models of the fdrst and second
order, respectively, as a function of the order of the initial
system of differential equations "#H" and the order "s" of the
vector 6 the parameters K being optimized.

Table 7.1 Table 7.2
Order of System of Differential Order of System of Differential
Equations for Computing First- Equaticns for Computing Second-
Order Partial Derivatives Order Partial Derivatives
—— — | 5 =
" 1 s 1w | 1B | w | "l s o] o6 | ow
; .
1 ol 6 11! 1| 2 P i 4l e6| am| 12717 2018
5 | 1@} 30 55} 80 | 105 { 5 (20| 330|2045| 6355|14555
10 | 20 60 [ 110 | 160 | 210 110 [ 40 660]4090 1271029110
15 | 30} 90 | 165 | 240 | 315 .15 | 80| 9390|6135 1906543 665
20 | 40 | 120 | 220 ! 320 | 420 1 20 |80 !320,87180 25 420 | 58 220
Table 7.3

. \ The numerical wvalues in
Formulas for Calculating fhe Tables 7.2 and 7.2 for illus-—

Order of Differential Equations tration of the high order of
for Partial Derivatives of the system of differential
Jolutions equations were computed by the
[ L formulas given 1in Table 7.3.

Also presented there is the
formula for the computation of

d 1 2 3

.fhe order of -the-system of- /250
NT \ et B+ 0 L2 Rt 13e 4 | -Gifflerential equations. for
N a(s+1) | 3 5 ;,ghamthird—order partial. 452
R L _ o derivatives. — :

| 7

Naturally, when the initial system has a high order (n > 5)
of Hgs. (7.16) and when there 1s a considerable order of -the vector
of the parameters being optimized (s > 5), the order of the system
of differential sensitivity equations for third-order models 1is
an impressive figure (NY > 330). From the foregoing it becomes
obvious that integrating third-order sensitivity eqguations repre-
sents sericus difficulties even for modern digital computers.
The situation becomes somewhat better wilth sensitivity moedels of
the second order (see Table 7.2). However, even here already when
g =10 and n> 5, the order of the system of egquations that must be
integrated te arrive at sensitivity functions of the first and
second order also exceeds the number NT = 330,

An applicable order of the system of differential equations

is obtained only for first-order sensitivity models. Therefore
to set up models of the quality criteria of the forms (7.17) and
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(7.18), we can use the linsar model of the expansions of solutions
to nonlinear equation (7.16) in a Taylor series in increments of
the parameters}Am,Ak&J“ﬂéggj being optimized: -

}1 x, (8, KO+ AK) = x, (8, K9) + N wi (2, KO) Ak, ;

=1 ; (7.29)
. Ak’[:kt-kgﬂ}, (l= 112""73)' l

where

Substituting the linear model of solution (7.29) into the
expressions for the quality criteria (7.17) and (7.18), we get

4 T ) 5 . o ]
am | fofalaxm s 3 olte coan)ar].

[t} £=1

&5

3, i (6, k) Ak;”.

I==1

l,=M [(I) [x;' (t, K(n)] 4

(7.30)

Using the Taylor series expansion of Eq. (7.30) in increments
of the parameters Aky (=1, 2, ..., 8), we can obtain an approxi-

mate expression for Taylor series (7.8).
Example 7.1. To illustratethe foregoing, let us look at

the process of arriving at expansion (7.8) using a linear model
of solutions for the quality criterion of the form

- .
L= M| {X*QX + UTU ) df i :
R 1 . L (7.31)

when we are dealing with the linear control

U = K¥X (K is a column vector). {(7.32)
Substituting Eq. (7.32) into criterion (7.31), we get /251
P T e TS :
| 1,:.44[_' X"‘E.-‘c’dt_l, -
: 0 1 I (7.33)
where
D=Q+ KUK*, N



Since

Xt 8Ky =x (¢ K™) 4 w (1. K™) 3k,
' K=Kk,

then we will have
¥
L=M [ VX {6 KW 4w (g, KO ARY (D 4 2AKTK™ -+
1}

4 AKCAR*) (X (4, KU 4w {1, K™) aK)) a:] )
(7.34)

We can easily see that after all transformations are carried
out, under the sign of the integral we get a fourth~degree poly-
nomial in elements of vector AK. This procedure of setting up
local expansions of mathematical expectations of several functions

¢ in a Taylor serles has been successfully used in a number of
studies /36, 62/ in optimizing linear and nonlinear stochastic
control processes.

The idea of using a linear model of expansions of solutions
to nonlinear equations (7.16) in a Taylor series is quite produc-
tive, since 1t enables us to compute only the differential sensi-
tivity equations of first-order wf {(t) necessary in setting up

the series (7.8), which can'considerably cut down on the volume
of preliminary work in arriving at sensitivity equations (7.26)
and the volume of computations. Let us make an estimate of how
effective this idea 1s for the case of setting up a quadratic
model of the quality criterion. When Eqs. (7.28) are used, we
must investigate %}(§L+234.2) equation; in setting up linear model

(7.29), the number of required equations reduces to n (s + 1),
that 1s, the number of required equations is reduced by a factor

§--2
of %= ; .

However, under thls approach the function 4 must be a function
higher than the first order in phase coordinates of the process
under otudy3 described by Eqs. (7.16).

Above we considered an exact method of computing the partial
derivatives of expansion (7.8). The desired first-order partial
derivatives can be computed also by employing approximate difference
formulas, for example,

ar RO ke 1K) 1.0 o
akg T e m = LE
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In the approximate computation of second-order partial /252
derivatives we can use various formulas based on different
experiment planning /E2 44/. As an example, let us consider
the case of experiment planning according to the scheme shown
in Flg. 7.3 a. Treatment of the results according to the scheme
gives the following working formulas for computing partial deriva-
tives

f —
ol @wL%Ak)—J(ﬂm——Ak] 1
E 28k,
gr (Y 408+ 1K — )—21( ™)
or; 287%3 -
| 1" + 8k, #! +.AE,) — (R — 8%, +
Coel o+ 1 (B0 -+ 8R;) — 37 (£%)
f Okidkj — AE;AM.EJ
| (i<j=12,...,5).
(7.35)
o -Ak —
a ‘] I
I i
! -
@ X -48k;
x4 ;A;k" ; 0 ak; 28k; '
Ak; : H ~- 2k, |
8k; = —x P -
i . Qakjn
4k} ! "akj

Fig. 7.3. Scheme of experiment planning for
determining partial derivatives

At the present time, experiment planning for computing partial
derivatives is carried out before beginning the computation process,
that is, it is ecarried out rigorously and remains unchanged 1n thé
process of optimizabtlon as a functlion of the behavior of the func-—
tion under study. This is basieally caused by the desire  td
perform | calculations of partial derivatives based on finite
formulas.

On analogy wilith Fig. 7.3 a, we can also set up other schemes
of experiment planning for computing approximate wvalues of the
partial derivatives of the quality criterion and the constraints.



(Fig. 7.3 b}. For experiment planning represented in Fig. 733 b,
the working formulas for computing partial derivatives of the /253
first and second orders are of the form:

| or 1 (K" %) 1 (K)

I dki ﬁ-Et '
gt T(KY 4 28k,) — 20 (&) + 8%,) + 1 (&)
ol 24%} '

2 (R + &%, &M LAk ) — 1 (B +
&l +28%,) — 1 { &9 + 24% ) _
T =14 ] (i, j=12....,3).
0k 20k;0k;
! _ L | (7.36)

To solve the problem of computing estimites of partial
derivatives, we can also use methods of optimal experiment
planning LEB, 77/ quite well elaborated for solving problems in
multifactor analysis.

The minimum number of experiments needed to compute partial
derivatives of the first and second orders for a quality criterion
when difference formulas are used is

e e
4 . &#43s4+2
M=

and is shown in the second row in Table 7.2.

In each of the experiments we must Integrate only the initial
system of differential equations (7.16) by as many times as is
regquired by the procedure of computing the statistical characteristics
of (7.17) or (7.18). The weak point of the difference scheme of
computing partial derivatives 1s_the indeterminacy of selecting
the increments of coefficientsiﬁki of the chosen initial approxi-

mation. Here, usually the function

‘_AE <0,14", 7.-,.*12 s) W 7375

1s employed.

Comparing fthese two approaches to solving the problem of
arriving at local representations of the guality ecriterion in the

neighborhood of the point K(O)
can draw several conclusions.

in the form of a Taylor serles, we

When we are dealing with small numbers s and n (s, n < 5)
for computing partial derivatives of the first and second orders,
it is best to use the sensltivity equations, since when differential
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sensitivity equations are jointly i1ntegrated with the initial
system of eqguations, owing to the common computational operations
of numerical integration of the differential equations the time
needed to arrive at the partlal derivatives is less than when
difference methods are used in solving this very same problem.
Let us demonstrate this. The time required to solve this problem
by difference methods can be determined by the formula

f, = N, ]

and the time reguired to solve the system of sensitivity equations /254

is
L 13- N'n
ot M

Intthese formulas, we use the notation: tl is the time needed

to sélve the (n + 1)-th initial equation; NP is the number of
equations;: n 1lg the order of the initial system cof equations
without taking infto account the differential equation for the

independent variable (t = 1); and ko is the coefficient of
P
the common operations. -

Let us compute the ratioc

The coefficient of the common operations kop depends on

the complexity of the right-hand sides of the sensitivity equations
and usually varies in the range kop o= 0.6~1.1.

The numerical values for nt and n% are in Table 7.4.

. Table 7.4
Coefficient of Effectiveness for Difference Methods
"Zr [ e

K} NP n
: v oe o o4 | v | 2 | s | 4

1 3 1,50 1,29 1.20 | 1.15 1,86 1,62 1,50 1,44
) 3 10 1,82 1,42 1,29 1,22 2,26 1,76 1,61 1,31
. 4 15 1,86 1,44 1,30 1,22 2,32 1,80 1,63 1,52
i 3 21 1,93 1.46 1,31 1.23 2.41 1,83 1,64 I.55
10 66 1,99 1.50 1,33 1.25 2,90 1,87 1,67 1,57
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From Table 7.4 it follows that using the sensitivity models
to determine the partial derivatives of expansion (7.8) is the
more effective, the greater the number of parameters beling opti-
mized in the system under study and the smaller the order of the
initial system of equations (7.16).

When selecting a method of computing partial derivatives of
expansion (7.8), we must takeninto account both the advantages
of the sensitivity models (in the sense of machine time outlays),
as well as theilr drawbacks (considerable cumbersomeness in
arriving at the sensitivity models), as well as the advantages
of the difference methods assoeiated with integrating only the
initlal system of differential equations and other criteria of
practical importance.

In estimating the effectiveness of these two metheds of
arriving at expanslon (7.8) from the standpoint of the cost of
solving the problem posed, we can obtain a result that is con-
trary to that shown in Table 7.4.

For the very same process of optimization using the two /255
above-described schemeg of computing partial derivatives, the
cost of the solution can be determined by the foldowing relation:

(7.38)

, + + .
apreptprep qbrogtprog 0E—otc—o ¥ awts?

where o are ceoefflclents characterizing the

prep} “prog’ %c-o?
cost of cne hour of operation in preparation, programming, and
check-cut of the program on the digital computer; o 1s the cost

of cne hour's coperation of the machine taking into account the

cost of one heour of work hy the operator; tprep 1s the time

required to prepare the probdem for programming (hours); tprog

is the time for programming (hours); t is the time required

Cc~0
for checklng out the problem (hours); and tstis the time required

to solve the problem on the digital computer (hours).

Let us assume that tThe time of each operation is proporticnal
to the number of the differential equations that are to be inte-
grated in carrying out the optimization process. Table 7.5 gives
all the formulas regquired for the calculations.

Referring to the data in Table 7.5, we can represent Eq. (7.38)
for the two methods of computing partial derivatives in the
following form:
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Table 7.5
Formulas for Computing the Time of Preparation,
Pogramming, Check-Out, and Solution of
the Problem

Symbols Methods of sensitlivity Difference
o theory methods
Qpnst e | %l,](
tprep ﬁprep:f__g_ru_gf ﬁprepﬁtr_{
£ B ;2~,Lr1(’59+38+2}J B ::(n—}-])I
prog prog . 2 .. .- PYOL: . -
24 n(st 43 2"‘)'7 . | }
3 n{st - 35+ Vg -
tg—o Be- ] - Bc-offlgg

9 n(st 435 4+2) s S35 42
by T A+ {tlnstkop i 2_wrrtlnst
+
y aprepPprep T “progPprog
+ o B
Cc—Cr' =0

Remark. n
stages.

st stands for the number of optimization

2 (3 D) e Ea
Cr =1 3 J+ IDwa\rtlkopnstf 2m+h

%Cﬂ= n41 ( 'fiﬁs+é
et T{n+4 1) + o 3 tlnst'
For ) = . =- = .
. or ) Xprog 1‘5, a,_, = 35, a = 32, 6prep _
= 3, Bprog = 0.5, Boog = 0-5, 0y = ?, 5, =5O.1, and kop = 0.8,
the numerical values of the criterisg C° and Cp as a funection of
the number n and s were computed and are in Table 7.6. Table 7.7

“prep = 3>

gives the ratio of the criteria CT to CP characterizing the /256
effectiveness -
. L
'rfc“——'c_p.
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Table 7.6 _ Table\ 7.7
Numerical Values of the Cost- Numerical Values of the Co-
. | Effectiveness Criterion efficient 75,
or 3 | ce n
$ i | n § 1 | 2 | a | 1
o2 | s ) e | o o2 | s | 4
1 1,89 1,69 1,84 2,25
| 200 | 25| 209 419| 06| 134| 162 | 190 3 4,01 3,56 5,01 5,41
3 682 | 706 | 1134 | 1386 | 170 | 198 | 226 | 254 4 3,44 3.21 4,01 5,44
4 (1026 | 1049 { 1422 | 2077 | 298 | 326 354 | 382 5 3,69 3,46 4,41 5,99
5 | 1438 | 1460 { 1984 | 2007 | 394 | 422 | 450 | 478 10 4,07 3,99 .29 7,70
10 4534i 4547 | 6196 9126I 114 | 1142 | 1170 | 1198 R R S - R
. I . . .
In Tables 7.8 and 7.9, analogous caleulations for the very
same coefficients a and [ when tl = 1 are presented as an example.

Table 7.8 Table 7.9
Numerical Values of the Effective- Numerical Values of the
ness Criterion Coefficient nc
or . , o f [ B
s n 1 iy 1 | e | s | a
1 ] 2 j 3 ! 4 , 1 2 3 4

1 0,683 0,870 1,010 1,100

1 365 [ 490 600 676| 535| 562| 588 615 3 0,610 0.875 1,000 1.230

3 | 1008 1470 | 1860 2132| 1655| 1682 17080 1735 4 0,594 0,873 1,100 1,260

4 | 60| 2170 1 27601 3172| 2455 24827 2308 2535 5 0,585 0,891 1.120 1,270

G| d0os | SOG0 | B840 4420 SaLd] 3442 34680 3495 F | 10 | 0,565 0,874 1,120 1,290
10| 6114 | 940 | 11940 | 13780 1 10613 [ 10642 10668] focas B ‘ ' ' - —

From Table 7.7 it follows that applying difference formulas /257
for computing partial derivatives is more effective from the
standpoint of the cost criterion of the optdmization process than

using differential sensitivity equations for tl 0.1 hour.

Here the coefficient of effectiveness rises considerably

n
C
with increase in the numerical values of s and n. The results in
Tables 7.8 and 7.9 indicate the redistribution of the effectiveness
of these methods discussed for different values of s and n. Here

the coefficient of effectiveness Na 1s smaller than unity for

s and n and increases with increase of s and n.

Note that the data in Tables 7.6-7.9 were obtained for arbi-
trary values of the coefficients « and p. However, analysis of
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these results indicates the need for conducting guiding calcula-
tions when planning the optimization process for a digital computer,
since by giving preference to a particular method of arriving at

the Taylor series characteristics without analyzing the class of
problems can lead to superfluous time outlays as well as to unnec-
essary cost in searching for an extremum of functions of many
variables.

7.4, Methods of Constructing Approximating Polynomials

Underlying the methods of computing the coefficients of an
approximating polynomial is the problem of the optimal approxi-
mation of a function of many variables with polynomial t7.13)
having specified degree d. If the functicn I (k 2, ey ks)
i1s computed at the points k( ), (l) fae s (j), (3 =1, 2, .
M), we have a problem of the optimal approximatlon of function
I{(K) with the polynomial T(R) at the points k(J) (J), “ves kéj),

that is, a problem of pointwise approximaticn £E2/ Suppose
the quality criterion of the approximation is of the form

T M
~ | (Y ) TUY e ()
= Nl Dol @, !
S . (7.39)

where P(J)(K(J)) is g weighting functicn characterizing the
requirements on the precision of the approximation at the specified
points (j = 1, 2, ..., M).

When p(K) = 1, we have the method of least squares. Let us /258
look at the table of experiment planning for the case of constructing

a quadratic approximating polynomial. For the set ‘of coefficients
(J) <J) e kéJ) (3 =1, 2, ..., M) suppose we have computed

the function I(j)/E(jl7 - (3D,

The results of the calculations are in Table 7.10. Suppose

M >-Ml(ﬁh__1+,3+w Introducing for xconslderation the matrix X
composed of elements from Table 7.10 of order (M, M, } (codlumns from
1 to Ml’ rows from 1 to M), and the matrix X¥X of order (Ml, Ml),

as well as a vector b of order (M, 1) (column M, + 1), we can write

1

out the regquired ratio of the method of least squares for computing

the coefficients of theaapproximating pelynomial, which are elements

gfvghe veetor A (a 895 8ps =ves Bgs Byqs Bips cees ass). We will
a



A= (XK x| (7.49)

Table 7.10 From Eq. (7.40) it follows
Table of Expériment Planning that by filling out Tabkle 7.10
in conducting the experiments,

— - -—— We can easily compute the co-
m R T TR TS Mm+1 | coefficients of the approxi-
No i I 5 | mating polynomial based on the

. | b ks formula {(7.40) presented 1if

{ ' the matrix (X¥X) is nonsingular.
TR T O TS Y S RTINSt M | 8ince the number of terms of

I B Y | R ST R I Yt ;» | the quadratic polynomlal is

! W y : M,, for the matrix (X*X) to

JA: T D TS RO O J® 1

UV o P T A N be nonsingular 1t is necessary

i ML W R L R0 | g o that the condition M =M, be

, T - : L. . —4gatisfied, first of all, and
j that there be no repeated
experiments, secondly.

When P(K)=#I| } it is necessary that each j-th row of the
planning matrix (all elements of the j-th row of Table T7.1ll) be
multiplied by ¥# ).l Then we can use Eg. (7.40) to compute the
elements of vector A.

Thug, the procéss of computing the coefficients of the approxi-
mating polynomial by the method of least sguares involves the
following:

1) carrying out M = Ml experiments in computing the function
1 /EY)7 ana £111ing out Table 7.10;

2) transposing matrix X and multiplying the resulting matrix /253
by the matrix X;

3) inversion of matrix (X*¥X);

4y multiplying the resulting reciprocal matrix (X*X)_l by
the matrix X¥*; and

5) multiplying the matrix (X*X)—lx* by the vector b.
All computations in this program do not represent serious -

difficulties when the computations are conducted on a digital
computer. Overall, the method of least squares admits of non-
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rigorous experlment planning, that is, selecting numerical values

of the coefficlents k(J) (L =1, 2, <., 53 3 =1, 2, ...; M), in

contrast to the dlfference formulas used in the preceding section.
In rigorous experiment planning the matrix X must necessarily be
specified before the beginning of the "experiments". Nonrigorous
experiment planning can involve a random selection of the sedquence

. of- point- k(J) (1 =1, 2, ...y 8), {(J =1, 2, ..., M) in which the

function TI( ) /K(J)/ is computed, or selecting the sequence of
points ké ) (1 =1, 2, ..., 8) on the condition that the sequence
of numbers I(j) (j =1, 2, ..., M) at least not increase. This
can be done by using various planning schemes.

7.5. Method cof Stochastie Approximation in Problems of Construeting
Approximating Polyncmlals

To cconstruct models of the gquality criterioen and constraints,
in the algorithms for optimizing control systems, we can use the
method of stochastle approximation. Thls obviocusly becomes possible
if we introduce a set w of increments of the parameters AK being
optimized and assume that on the set w the elements of vector AK
are random with an assigned symmetric function of probability
density distribution f (AK). Then when the quality criterlon

I (AK) is approximated by polynomial T (AK), with minimizing of
the criterion for estimating the precision of the approximation

r=mllrar -7 (M)]z}j

we can use the above-derived working formulas for computing the
coefflecients of the approximating polynomlial. Thus, under the
quadratic model of fthe quality criterion

" s s
[(AK) = ay+ N aidk; + N aydkdk
i=1 i, j=1
' ‘u;n .
we will have the following working formulas for computing the /260

o) icients a., and a,.:
coefficien ags i3 13

ey ; s 2] )
(I+vM[Ak" [‘(i»r ) EM Akj] k]zakiJ) '

{=1 £ =]

e

-tJ

(7.41)



7
“i} e -
<Mp@hupﬁr(’\fﬂ1£pu,m;
?5g_qﬂqjsk” z, o
Aila&*]_.(aflakalji (i=j ~~T,2,‘.., $);

L (7.41)
a; -‘M[Ak‘fj U—],Q,...,S), . (cont)

where

Ly = M, |7 (AK));

Z = Mu [18K) AR (= 12..... 5),

Z8 = Mo 1 (3K) MeARy) (1 <j= 1.2,....9). (7.42)

Eq. (7.41), under the normal law of probabllity density dis-

tribution of vector AHK with assigned root mean square values of
its elements o, (i =1, 2, ..., 8), are of the form -

S 2
a(]:(l"*-%) D—'—l— E.E._

) o
=1 !
zh
a,=-;_,:-- (i=1,2 , 5)

=5 ((<j=12,...,s)

a,=1 "7
2

o =j=12,...5)

i {(7.43)

One feature of using Eq. (7.43) when computing the coeffi-
clents Bos 8y and aij is that on the set SEAK a central point

K(O) is singled out and all elements of the vector K are- grouped
relative to 1t with assighed probabllity distribution (we are

talking about the vectors AX). The elements of vector AK can

be distrlbuted with equal probability relative to the point K(O) /261
on the set w. TIf AKEC[~b, k], then when M[AR]=0, M [aR3] .,f.. R

(1 =1, 2, ..., 8), from Eqs. (7.41) we gét the following relations:

2(2)
b

-a..l ;

. 5 P
aﬁm(l—l- ‘?—) ‘T{‘}ﬁ

T B2

(7.44)




Eqgs.

form

and

= 1), Egs. (7.45) and (7.46) become
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az(n
ai f—d b2 (t s !’2’ - s):
i

9z} .
*—[}—.23'2—' li{jWI,Q,...,S)'
ﬂuﬂ i ’
32523"'[’32(: . ,
RS (i==12,... 80,
/ (7.44)

(cont)

For equal ranges of variation of the elements of vector AK,
(7.483) and (7.44) are considerably simplified and are of the

- s 1 Sy o
@y = (1 + '_2'") Zo— 5 0, Zi
(=21

2
a = = (f2 ],2,. .ey S);

zP
- U<j=12...9),
a;y =
" zg)"“’ezn (i=j=129
4 L:j_—. ) 1"'!3
P ) (?-MS)
- )
a0=(1+%i)zo—--3'f—222ﬁ’;
i=1
a = 2
‘......T (izl,gg.u.,s);
9z
_ﬁL(i<j=LZ“”SL
a,, = " ‘
" B2z, 2
g = =12, 5.
(7.46)

And, finally, for the normalized elements of vector AK (o=

J‘ "-.‘ -
13Nz 1 N e,
ay=(1+-5)%~ 3 X, 28

(7.47)



4 =2 (i=12,...,5),
2§~ 2,
gy | T = 1209, |
25 U<i=12,...,9) (7.47)
- e - _NJM.,——J (cont)
and ‘ e -
‘ @y = (I +_%‘S)Zo_ T) > Zﬁ).
; ’ l=1
“ a,=3Z" (1=12...,5):
Bz 15z,
au= -’1-‘ {L=j=1,2_.,.,s)‘ [
@ 4 .. _ ‘
i (l’l<.’-""1!21'.'-as)— . - (7.“8)
Egs. (7.47) and (7.48) are quite simple computationally
speaking for computing the coefficients a o? 210 and aij of a
second degree approximating polynomlal 1f we know the numerical

Z(1) (2)_

cexalet values of these quantltles in accordance with thelr mathe-
matical expressions (7.42) does not appear possible, then in

3(1)  4(2)

A
their place we can use their estimates Zo' Zi > Dig s defermined

values of ‘the gquantifties Z o? Since computing the

by one of the known approximate methods of statistical analysis.
To do this, we must set up the sequence of ¥ectors

K”’ﬁK”’. Km"l (7.49)

whose elements satisfy the selected law of the distribution of
probability density f (AK) (normal or equiprobable), then by
computing the function I (AK) for each element of sequence (7.49),
we can construct the sequence of functions

¢ !(I) I' K(I)L !(‘.":) [AK'(?)L_ .'.' I(Arl) [AK(N')]. { (7 ) 50)

Treating the elements of sequences (7.49) and (7.50) by one
of the methods of the statistical analysis of nonlinear systems,
(L) H(1)
2,77, L.
1 dJ
the method of statistical tests we will have:

( )N W[AK“H ]
. . (7.51)

I
we can compute the estimates Zo’ » Thus, when using /

H

"bd?‘

J_
N,
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I

Z(1) () LIFVIOR
S (2)5, = o %11 [ak ].ak
(29), - ﬁﬂ” [8K] ARPAED (j<j=12,...,5
1

l=

(7.51)
(cont)

Essentially, the only reguirement in conducting the above-

5 (1)

is the requirement that the elements of sequence (7.49)

degcribed computations to arrive at the estimates (Z )

2 (2)
(21",

-]

1

satisfy the speclfied law of the distribution of probability
density of vector AK.

Analyzing the foregoing, it can be noted that this algorithm
of the method of stochastic approximation jointly with Eq. (7.51)
Tor computing estimates leads to the necessity of setting up
sequence (7.50). The latter is a quite computationally laborious
operation if the function I (AK) is the mathematical expectation
of the specified random function, for example,

QK = M2V, 3K) | (7.52)

To compute each j-th element of sequence (7.50) we obviously
must construct the sequence of ?ectors

VOO v (7.53)

and for each of its elements V( 1) we must compute the seguence of
functions

QUWﬁK4” qu QM[AK”’I/M];-.GW“WAkG’tﬂNﬂ:l (7.54)

Treatment of the sequence (7.54) for example by the method
of statistical tests u51ng the formula

: ( [AK(”]) =')_V]_ E q)(f) [AKU) VU)] A_!

(7.55)

then gives the necessary estimate of the required mathematical
expectation (7.52).

Overall, to_construct a quadratic model of the quality criterion

we must perform N ='Nl X N2 integrations of differential equation

(7.2) describing the control process. Thus, when Ni=N.>100], /264

the number N = 10,000, which means a falrly large volume of
computational work and cumbersomeness in this approcach to setting
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up models of the gquality crifterion or constraints. For a high
order s of the vector of the parameters K being optimized, this
approach nonetheless can be more applicable than the algorithms
described in sections 7.2-7.4. Owlng to the necessity of reducing
the number N of integrations of differential equation (7.2),

below we look at several sglgoriithms based on the ratios of the
method of stochastic approximation.

To do this, let us introduce the random vector 'Alcomposed
of elements of the vector of random perturbations V and elements
of the vector AK (we assume the randomness of vector AK for
computational purposes). Then we can set up a polynomial for
the functlon(n(v AK)\

.:j: DV, AK) = a, + 2 a,hk; + V au'&kijk

ijl

+ ";‘ by, + S byt + 3 by chAkw]+
:mt i;a:[ I—l;z—l

4

b=
1pee

nr

¢ Akkz \“c ,\ka\kw.

rI!

‘- e o] C(7.56)

Performing the operation of averaging polynomial (7.56), we get

+

i

1%

' I(AK) = a, -+ :,S aAk, + Z a; Ak AR+ 2 b, M v} + |
{==1

I i j=1 =1

Coay moos
+ E }: ey [97] Ak, + E E cunM [vi] AkAR,.

t=11I=1 \ i=11 v=1

(7.57)

To obtain Eq. (7.57), it is assumed that there is no correlation
between the elements of the vector A . By writing out Eq. (7.57)
in the form

|~ m ) &
J8K) = ay+ ¥ oM (o] + N (d;-l- N M [vd)m +
: L

o= = l—]

&

B R )
| et IR ‘ (7.58)
We can state that we have obtalned an approximate guadratic model
for quality ecriterion (7.52). It appears possible to consider a
flairly 51mple algo?lghm %f)we propose another method of computing

1 2
Z

\
the elements ZO, 1 ij

, and s0 on.
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~

Since

|

;;;Zo = M/ (AK”"J

then with reference to Eg. (7.52) for the gquality criterion
DIK) = My |2V, 8R)]
we get

P2y My [1(A)] = My [ M, [0 (V. 5K)]] =

L = M o [DEAK V), (7.59)

1f the elements of vectors V and AK are uncorrelated. This
assumption is easily satisfied in practice, since randomness is
imputed to the vector AK formally only for computational purposes.

An analogy, we can describe algorithms alsc for computlng

(1) and Zi?j. We will have

o Z8 = M [T(AK) Ak] = Mug, v [ (AK, V) ARy),
. ?55’: Max [[ (AR ARy = Mg, v [9(V, AK) 8R,AR |

the elements Z

(7.60)
(7.61)
Essentialiy, for uncorrelated elements of the vectors V and

AK, the operation of successive determination of the mathematical
expectation of the functlon %p(v.AK)L, initially by averaging on

the setS)v of the elements of vector V for fixed values of vector

AK, and then averaging the results of I (AK) on a set Wag in

accordance with Egs. (7.59), (7.60), and (7.61), can be replaced
with the operation of single averaging of the function 4DV, AK)
on the set !2,&Q,Uo,] In accordance with Eq. (7.59), (7.60),
(7.61), we can write out the formulas for computing the estimates

(1) z{2)

of elements-zo, i ij , for example, by the method of statlis-

tical tests:

R -
(Z“)z\'}, = N—ll E (])”) [A[\"(“’ V”)].
T re=t
‘ ) Y
‘ IO L WP ot f
.‘ (20 5 DA
I =
e N, ‘
(29),,= 3= S0 [3KO, v ak0se (1 <) - 1.2,...,5%J (7.62)
‘ =1




In order to use Eq. (7.62), we must construct two sequences:
Fiw ETI -
a sequenee of rardom vectors /A =/{(NJAN]]

CAMA® AV - (7.63)

the sequence of numerical values of the functilons /26

@“W\“ﬂ,wm[\wj.,,®“@[\“fj-(

(7.64)

computed for the solutions to nonlinear equation (7.2) for each
element of sequence (7.63). In accordance with the notation (7.63),
we can rewrite Egs. (7.62) as |\

r - ¥y S
. (zﬂwazi%_zchm[AmJ,
: ; '1—1 :
‘ (2?))}“ = \7(1)(”[ (”] Yom 41
1 ’ 1:::1
{2m), = E""“h"’] mitmey F<j=12,...,5). (7.65)

fo= 1 ;
Let us look at an example of app%ying ?qs. (7.59) - (7.61)
1) 2) .
R Zij , 1f the function

MV, AK}| 1s specified on the set £24 with the characteristic

to compqﬁeﬁthe numerical values Zo’ Z

Oy = const = 1, qﬁK = const = 1, and is of the form

o (v, K) = 0,5+ 0,108k + 0,90!Ak ) - 0,40%0iAk, +
i 030iwlAE] 1 0,050 050k Ak, + 0,01 0llARARL

Computing I (AK) in accordance with Egq. (7.52), we get

|7 (AK) = M, |® (AK, V); = 0,5 + 0,1842 - 0,64%, +0,40%, +’
‘= +2m°+07om B, + 0,033438%3 ‘ (7.66)

Using this result (7.66), let us compute in accordance with
Eq. (7.62) the quantities necessary in constructing the quadratic
model:

)= 3,33 2 = 0.6; Z8 = 0.4; 21 = 3,59;
2 =075, 28 = 8.89.

j
[
|
i

(7.67)
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Obvicusly, the numerical value (7.67) can be obtained by
using Egs. (7.59) - (7.61). Thue, we will have

 Zo=333 2" = 0,6: 2= 0.4
z“’ = 3,59; z, =0, 75 gz2 ~ 8,89,

(7.68)

S (2)

C, 13
accordance with the formulas (7.67) and (7.68) we have obtained
coincide, however in the case of (7.68) the calculations proved
to be sumﬂﬁr(]by virtue of the use of the single operation of
mathematical expectation.

The numerical values of the elements Zo’

Let us compute the coefficients as 255 and aij in accor- /
dance with the model (7.47). We will have
ag = 0,42; a; =008 @, =04
~l ap = 0.13; a—;-_.» = O,T'S; Qyn = 1,78.
In accordance with the foregoling, the quadratic model of
the quality criterion can be represented by the equation
l(.\f\) -*042406Ak +D4Ak —}—07’5,\/3 Afc,—f—
+- OIBAkQ ]78Ak’
+ (7.69)
A similar quadratic model of the quality criterion can be
constructed alsc for the equiprobable distribution of the praob«
ability density of the elements of wector AK. Thus, when b = 1,
we get: o .
Zy = 1,436, Z" = 0,2, ZM = 0,133;
bz = 0489 Z{P = 0,083 Z = 0.72,
and, tThls means, that when
[ oa, =453 @, =06 ai=04;
! fln = 0.]1; CL“ == 0.75; a:: _ 2,71
the model of the quality criterion is of the form
T(AK) = 453 + 0,6A%, + 0,4Ak, - 0,750k AL, +-
! + 0,1 1842 + 2,71842 . (7.70)



Models of quality ecriteria (7.69) and (7.70) differ from
each other, as do the results of searching for an extremum for
these models

AR = — 4,9; AR = 0,903;
CMel” = — 3750 ARY" 0,304,

Therefore selection of the law of the probabllity distribution
of vector AK and the statistical characteristics of its element
constitutes one of the principal problems in this algorithm
based on the method of stochastic approximation.

Thus, essentially this method bolls down to expanding the
space of random vectors QV of this process by imputing random

properties, for computational purposes, to the vector of incre-

ments AK of the parameters K being optimlzed and setting up the
random vector AK. Treatment of the results of the output

coordinates of the controlled process (7.2) obtained when 1t is

acted on by the realizations of the enlarged vector A enables /268
us to carry out the above-~indicated computations and to construct

the model of the quality criterion and the constraints necessary

for cptimization.

An advantage of this methed for sefting up models of the
quality criteria and gonstraints on the set of parameters being
optimized lies in the considerable reduction of the volume of
computation through the single deriving and treating of the random
sequences (7.63) and (7.64) instead of the sequences (7.53),
(7.54), (7.49), and (7.50).

Returning to the quadratic mefhod of the guality criterion

7 _f(».\K) = ;%+ é*AK-;-_Ak*CqK,j (771

where

TA=a, B=(a), C=(ay). |

written in matrical form, we should note that by virtue of
employing the approximate methods of statistical analysis for
computing the coefficients of the approximating polynomial, the
elements of vector B and matrix C contain random components AB
and AC. Therefore Eq. (7.71l) can be written as

7 A4 (Basn) sk ax= (81 ac)ak. }
o - - (7.72)

2673



264

The condition of the extremum of quadratlc form (7.72) here
is of the form

K= - Jf (€+ac) (5 na)~|

(7.73)

. The random component of the matrix C can to a considerable extent

determine the fact of the existence of a matrix that is the
reciprocal of matrix C, and this means the soundness of the
expression (7.73). Since in computing the elements of matrices
B and C we can estimate the possible maximum value of the error

{1acy| <2y} and 188 <=,] it appears possible when necessary to organize
a correction to matrix € such that by changing 1ts elements cij
by the qualltylﬁﬁA ,ﬂﬁwe can ensure that the conditions for the

existence of the recilprocal matrix C are met. Denoting the
correctéd matrix by C, we can write conditions (7.73) in the form

A'f?=——;r6 é %6"':\8.-
N e (7.74)

The second term in Eq. (7.74) then will characterize the error

lsak = ¢='aB) in the computing of vector AXK at each step of opti-

mization. The foregoing indicates the necessity of the statistical
analysis of the results of optimation obtained by employing numer-
lcal 1terative methods.

In conclusion, let us look at the problem of constructing /269
guadratic models for quality criteria of the form

I (AK) = My [07 (v, AK)],

;\iL (T a 75)
.i 1, (AK) = Mv[ OP(V, AK) dt],
L= MU0V, AK) — M [0 (V, AT, (7.77)

quite often encountered in problems of the statistical optimization
of control processes.

We can write expressions analogous to Egs. (7.59).- (7.61)
for the guality criterion (7: 75), when p = 2. We will have:

ZU MAK v [‘I’p (V AK)]
Z" = Max, v [0 (V -AK) AR,
2 = Mag, v [OF(V, 8K} ARAR)).

(7.78)



We can proceed in like manner alsoc in computing the vector
L={Zo, Z{" 27 for the quality criterion (7.76). Here, we get:

T
Zy =My s [f PPV, AK. 1) dt] .
K]

1

-
ZM = My, s { forv, Ak, p dm"ﬁ]-

(

G r
Zij = My, s [ [ o, sk ndmj;\:::,}.

i

(7.79)

The situation is somewhat more complicated when we are
dealing with the quality criterion (7.77). Transforming Eg. (7.77),
we get

fy= M BV, AK)] — (M, [ D (V, AK)| 2.
(7.80)

Since our developed apparatus cannot be applied directly to Egq.
(7.80) by virtue of the nonlinearity of the above-described
transformation, in this case we can construct guadratic models
for the criteria :

M (02 (V, AK)] and M, [D(V, AK)]
in the form
M2 (1, AR)] - a, 1 (a'"Van § ARaAR
M0 (1, AR = b, -+ 160 SR - ARTDFAR
(7.81)

Substituting Egs. (7.81) into (7.80), we can get an approxi- /270
mate formula for the quality criterion (7.77) in the form

s = g 03+ [at” 42006 " K+
e ..!KJ ’a(_’) . Qéﬂbé‘-ﬂ o bll} {bll)J*J AN (T 82)

We can similarly carry out computations for the integral criteria
" of the form ' ’ S

. ,
[ = .mv[hf 10V, AK) — M, [D (1, Ak;);aaff] .
&



7.6. Methods of Allowing for Constraints in Problems of Opti-
mizing Control Systems

Above we formulated the problem 7.2 of the multidimensiocnal
optimization of an automatic system described by the nonlinear
stochastic differential equations. The methods of computing the
numerical values of the quality criliterion and the constraints,
which are statistical characteristics of the assigned functions
of solutions to the stochastic nonlinear differential equations,
were discussed 1in Chapter Five. Below we examine the problem of
nonlinear pregramming, assuming that all the necessary computations
can be successfully carried out by using the above-presented
methods, in the form of problem 7.2. In examining the methods
of the solution of problem 7.2 we will assume that the vector K
sought for does exist. Problem 7.2 boils down to general problems
of nonlinear programming, for which there are as yet no common
methods and solution algorithms if nothing is known in advance
about the nature of the functicns I, Ql’ Qg, sauy Qg.

The quality criterion I(K) in this problem can have several
extrema, and the constraints can be nonconvex funetions of para-
meters of the control K. This feature of the problem led to the -
development of a long series of approximate methods and algorithms
for solving problems in nonlinear programming employing. both the
d%ﬁermigate as well as the random search for the optimal solution
/61, 31/.

Let us describe several particular problems in nonlinear
programming that can be posited as the basis of the approximate
methods of solving the nonlinear programming problem of the form
7.2.

Problem of nonlinear programming. If the quality criterion
(7.1) and the constraints Ql, QE’ vy Ql are linear forms of the

sought-for parameters:

[ =a,+ § ak,.
= (7.83)
erzb_r'.n'}'l;!bj.iki = 1,2,...,”. : (7 8)_‘)

" £hen the problem of determining the optimal vector ¥ is a linear /271

programming problem, which can be mathematically formulated thusly:

Problem 7.3. Find the optimal solution X from the condition
that the quality criterion (7.83) is a minimum given the constraint
(7.84) and the constraints of the form (7.5).




The methods of solving linear programmlng problems are qulte
well elaborated. The principal method of solving the problems in
linear programming is the simplex method.

Problem of quadratic programming. If the quality criferion
(7.1) is quadratic in form, as follows

HK)=a,+ Va[kt-i- \ a:jk/ﬁ;,
A,: _”offgl _ (7.85)

and if the constraints are linear relations of the form (7.84) and
(7.5), then the problem of determining the optimal solutionszK is a
problem in quadratic programming. Essentially it amounts to the
following.

Problem 7.4. Find the optimal solution K from the condition
that the quality criterion (7.85) is a minimum, given the constraints
(7.5) and (7.84). The methods of sclving problems in quadratic
programming are adequately elaborated, however known methods in
algorithms require convexities or rigorous convexity of “the
quadratic quality criterion (7.85) being optimized.

Searching for an extremum.with equality constraints. If the
constraints (7.6) are the quality constraints of the form

Q Q';'(.s-_m )(' ' (7.86)

then the problem of searching for the optimal solution K is solved
by employing Lagrange multipliers, as the problem in searching for
the extremum of the function

(7.87)

1-1

:f H—min T{KY+ V} [Q Q?]} f

Since the Lagrange multipllers are not specified in advance,
here to determine them we mist then use the relations (7.86). In
the casge of the quadratic quality criterion (7.85) and linear
equality-constraints, this problem i1s solved by employing the
following algorithm. By writing out Egs. (7.85) and (7.84) in
matrical form, we will have

[ =a,- - a*’!\ i K vm [ (7.88)

—_— R

Q=b,+8K | | (7.89)
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where /272 .

a, is a number; s* < (a,u0;...q);
A = (ti); B = (b,‘j);
"); == (bolbﬁg. B 'bi.ls)-

Since in this case Eq. (7.87) 1s defined by the formula

H = {ay+ a*K + K*AK + A% (b, + BK)),
AP == (M. k),

the conditions of the optimality of quality criterion (7.88) are
of the form )

oK

( o )9 = a+24K + B*A =0,

whence
- l - ] *
ﬁ=—?ﬂlw+3n- (7.90)

By substituting Eg. (7.90) into Eq. (7.89), let us write out
an equation for determining the vector of Lagrange multipliers

bo—5BA™ (a4 B'N) = Q,,

whence we can obtain the followlng equalilty:

—1 4% — ,_,_.,],... At |
_\::*;Q(BA B) l[bo—ij. QBA a]. (7.91)

And, finally, by substituting Eq. (7.91) into (7.90), we
.get a working formula for computing the optimal coefficients

Ko opd™a A7 B BB [0, Q= 5],

(7.92)

- We are seeking. - S s S R S
In this example, Eqs. (7.90), (7.91), and (7.92) are valid if

matrix A is nonsingular. If here the constraints are described by
second-order equaticns of the form

268




Ag'.::‘ by - b*k‘f}‘ KEBR = gy - (7.93)

(g is a scalar), the problem of searching for the optimal solution

K 1is already considerably complicated, since in this case we will
have

K o= e ; (A - AB}““’ (¢ -+ \B):
(7.94)
by + 5" |- (A ABY gt AB) 4
- ! /273
3 {_ (A ABY  a :\B_)’”B [M_ A+
+AB) (@A) =g, (7.95)

Eq. (7.94) and (7.95) are nonlinear equations in the numerical
value of the Lagrange multiplier A . To solve Eq. (7.95), it
is now necessary to use numerical methods., When { equality
constraints exlst, we will have a system of fourth-degree non-
linear equations.

There are several algorlithms based on reducing the problem
of nonlinear programming with inequality constraints to a problem
in searching for an extremum of one function of many variables
using "penalty" functions. Let us introduce a miscoordination
vector in meeting the constraints

M =QKY—GQy
and "penalty" functions
C?(BQ[) i= 1!2""!1'

Then we can seek the solution to problem 7.2 as a solution
to a problem of searching for the minimum of the function

)
H = mﬁ!n f(K)y+ E 5 (AN 8Q (KD},

£oam ]
o L
H = min JI () + ¥ '?;(Mé’:)l-
L l (7.96)
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The "penalty" functions can be of the form

3 (A0 = | A 20 “’

Lo aQ‘ <0,
(d)}mf€¢% ", 0,
0 BQA/u
,(b(‘)}_.eiq

‘and so on.

Here h, are fairly large positive numbers.

i

The problem of searching for an extremum of Eg. {(7.96) can
be scolved by familiar methods of searching for an extremum of
functions of many wvariables.

Of interest is an approach to solving problem 7.2 using /274
algorithms of the successive refinement of solutions based on
algorithms from linear and quadratic programming. The method
of successive optimization for solving problems in nonlinear
programming 1is given in a study by V. M. Ponomarev /59/. Essen-
tially, the method of successive optimization amounts to the
initial problem in nonlinear programming being replaced with z
sequence of problems in quadratic programming which was examined
above. Since the method of successive optimization has found wide
use in solving problems of the parametric synthesis of control
systems of flight vehicle motion, control systems for industrial
processes, and so on, and 1s falrly well known to a wide range of
specialists in the fleld of control theory, we omit presenting
the scientific and methodological fundamentals and the computational
features of the method of successive optimization within the frame-
work of thils present book.

We can simllarly construct a process of successive opﬁimization
based on algorithms in linear programming. Let us explain the fore-
goeing by assuming that the gquality criterion and the constraints
are convex or rigorously convex functions.

Suppose we have selected an inltial (figurate) point Kg in
the parameter space QK. In the neighborhood of this point we

can write out expansions of the form

o o d = T{KD) 4 (—w ): AK-{- AK® (-;g%{,_)yn;m’-%-.rs— . R
i}
Q = Q. (ki) + (% )fn MK+ K[ G 8K+ (7.98)

0




for the quallity criterion and the constraints, where AK is the
s-dimensional vector-column of the increments of parameters AK=

=K —Ki, 1K), QL&Y i=1,2,..., s ars the values of the quality

FLE TR
criterion and the constraints computed at the points Kﬁ,%k,%%w
2 PO, '
$QW§%?M which are, respectively, the vector row and the matrix

¢’ the projections of the first- and second-order gradients of
the quality criterion and the constraints, and so on.

- Limiting burselves only to the linear terms of expansion
(7.97) and (7.98), we can formulate the following problem ir
llnear programming: L

o o, R

1= min {1 (K5) -+ [ (K3)] 4K,
QK+ (KK <@ =120 i
(7.99)

Constraints (7.5) can be represented in the form

KK+ KSR (7.100)

Naturally, expansions (7.99) are valid in some closed para- /275
meter space

ARV W
] | (AK) L W, (7.101)
where W.is the vector column of constant numbers.

In thils problem the vector W is unknown and its determination
requires considerable computations.

Assuming that expressions (7.100)} can be determined, let us
write out the process of searching for vector K supplying a
minimum to the quality criterion (7.1) for the constraints (7.5)
and (7.6). '

For the sequence
1V?<‘¥3<.-.<1¥’?<... (7.102)

we find the sequence of vectors

Ko K= K+ 8K K= K AKD, (7.103)
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and, this means, the sequence of numerical values of fthe quality
criterion

TRy S TR > TRy > - (7.208)

and the sequence of numerical values of the constraints

PQ, (K <Q, QKN <@, .. Q, (K<, ...

S _ (1?‘_‘1121 Tt [) N (7- 105)
by solving the sequence of problems in linear programming

i f_ in 17 (K9 (K 1,

| min {1 )+ [ (3] *

u Q ! ey .

L Q, Ky + [aK”(AO] AKCQ (p=1.9,....0),

‘! KK + MK <K,

L RS WY (=12, ..., | (7.106)

The computations of the sequences (7.104) and (7.105) end at
the i-th element of sequence (7.102) when one 6f the conditions
of sequences (7.104) and (7.105) 1s violated.

Let us call the constructing of the i-th sequence (7.102)
a stagé In the solution of the optimization problem, and the
solution of the linear programming problem at the i1-th stage for
the j-th element -- a step.

Since the values of the quality criterion and the constraints
are computed at the end of each optimization step for the construc-
tion of sequences (7.104) and (7.105), these values are used at

- the new optimization step for revising the linear programming

problem (7.106). G@radients of the quality criterion and of the

constraints are computed only at the first step of each opti- /276

mization stage.

At the polnt ]
K' K’? ]+AK° l

the llnear programmlng problem is formed again, that is, its
00,7

are computed.

For the new seguence

Ll o g <l < 1

]



and

K K= Ky 0K K= Ky HaKY . K= K34 0KY: ..

o

4 solution is carried cut for the linear programming problems
with W = w% (L =1, 2, ...): :

{= mi_n{i(K}) + [gﬁi—.(/{é)]"mﬂ;

Ak j
—_ 1 _doﬁ Kl # r ] .
Q, = Q, (KN + |gap (Ko)] 8K <L Qe P=1,2,...,14

KK+ AL R
JAK | <) (E=1,2,...)
(7.108)

and at the points of the parameter space
Ki K Ky oo K oeenn

corresponding to the sclutions obtained, the values of functional
I(K) and constraints Qp(K) are computed based on exact formulas,

-

and the following sequences are constructed:

IH(K) > B(KY) > . > >
}'D(Ké})“‘ngp;
LK) <Qy -5 QK< Qs o (7.100)

Violation of one of the conditlons (7.109) at the j-th element of
sequence {(7.107) serves as a signal for concluding the process of
golving the linear programming problems (7.108) and the formation
of a new linear programming problem at the point ki = K}+ 2K}

Thus, a sequence of numerical values of the quality criterion

HRY S TR > o >R 2. (7.110)
is constructed.

If the elements of sequence (7.110) standing one after the

. other-differ by a prespecified quantity ¢ , we can halt the solution...

process and assume that the vector of Kg converges at the €- /277

neighborhood of K, providing a minimum to the quality criterion
(7.1) given the constraint (7.5) and (7.6).
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Por a complete description of the procedure we must dwell on
the problem of forming the sequence W = gl

To solve the question of selecting sequence
wga::*zc{f,«;j._,<Ja,z_.=;'-::,_, 7 (7.111)
we can make use, for example, of analogs of gradlent methods.

If each i-th sequence (7.111) consists of a single step,
fhen the gradient method can be reduced to this process of opti-
mization, as an analog. Here, at each step we must determine the
gradients of the quality criterion and the constraints in the
linear programming problem. Suppose the magnitude of the step
is determined by the formula

pg—%ﬂkQH_—.O.
= (7.112)

If the magnitude of the step .p is selected, condition (7.112)
can be used in forming the vector W.

For example, ij can tbe determined by the formula

(7.113)

Eq. (7.113) defines the vector W at each optimization stage
and can be used if at thils stage constraints (7.6) are satisfiled.
If the i-th stage consists of u stages and if conditions (7.6) are
satisfled, the problem of constructing sequence (7.111) can pro-
ceed on analogy with the method of steepest descent. In several
cases the constraint (7.6) can be divided into two groups

Q—-Q=0 (=12...,1), (7.114)
Q<@L (U=b,+1,.... D).
o " ) (7.115)
Then the elements of vector W are defined by the formulas
d ;N ' ' ' - o
[‘,ﬁ;‘ (&8) + E’h e (Kf,)] P2
wi oz | .
I <y ; ) L
b 81 Kt 4‘.\:‘,; ‘fg_',, e
ARSI Ry 1169
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: Lagrange multipliers 7, are the solution to the system of /278
algebraic equations :

)

(A ' <]

o X B =0 (r=1,2,...,0),
yue ]

where

()Qp i Of ;
%= }; ax, (Ka) 3 (K,

v=]

3 do: e ()Q
s .};o,{v’ (M‘J ([‘ 2

Here, constraints (7.115) and (7.100) will be taken into account
automatically when solving linear programming problems,

Thls successive procedure utllizing the formalized apparatus
of linear programming is quite effective when digital computers
are used. Its main dlsadvantage is that in it the sequence of
numerical values of vector W is not strictly defined. Its advan-
tage is the relative simplicity of the linear representation of
the criterion and the constraints.

The V. M. Ponomarev method of successive optimization pre-
supposes constructing a sequence of solutions in the parameter
space SEK

rd g
Ky Kl oo K2 L

by solving the sequence of problems in quadratic programming, of
the form

o L. )
7= minld (K + [aR ()] 8K -+ 38 5 () 8k
QK+ [FR (k)] ax <,
K< KL+ MK K.

Formulating problems In quadratle programming is much more com-
plicated than forming problems in linear programming. However, the
convergence of the process of searching for solutions to problem 7.2
in this case is not determined by subjective factors, as in the
sequence of linear programming problems. By employing methods of ~
constructing models of the quality criterion and constraints examined
above, we can successfully apply the algorithms described in this
section To optimizing control systems of flight vehicles moving
In the earth's atmosphere,.
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CHAPTER EIGHT

~
A%}
el

STATISTICAL PREDICTION PROBLEMS OF CONTROLLING THE
MOTION OF FLIGHT VEHICLES IN DENSE ATMOSPHERIC LAYERS

8.1. Control of Motion of Flight Vehicles in the Atmosphere
- wilth the Predictlion of Phase Coordinates

In a large number of cases the control of flight vehicle
motion in the dense atmospheric layers described by a system of -
nonlinear stochastic equations

K== filxy, Xy oo Xt sy 1, T, T T
n{t)y=x, (@E=12...,n)

(8.1)

is constructed so that the vector of reference control U(t) is
specified, and the correction of the phase coordinates of the _ N
process is used at specific Instants of time t;, t,, ..., tpEito’ T/

by applying to the system (8.1) the controls AU = U - U acting
along the time Interval AT. For definiteness, we will assume
that the duration of the correcting controls U i1s constant and
equal to the magnitude of AT.

The value of the correcting controls is usually bounded

AU (£)] ALY (i=1,2, ..., p), (8.2)

where AU? are specified constants.

Suppose the correcting control is selected on the condition
that a minimum .walue. is provided for the-guality eriterion -

[=®(8X), (8.3)
characterizing the scatter of the process either at the next instant
of correction & = ti b1 or at the time instant when the control

of the flight vehicle is terminated,
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Suppose for a specified reference control we know the phase
state of process (8.1) for the unperturbed motion X{t) = X(t).
The effect of the perturbing factors leads to the deviation of the
procesgs phase coordinates from the reference values characterized
by the mismatech vector '

AX(H =X {H - X, |

The vector AX is a function of the random perturbing /280
factors (vector V). Owing to the randomness of vector AX(t),
the correcting impulses AU(ti), {1 =1, 2, ..., p) must be

functions of the elements of the mismatch vector.

The solution to the problem of constructing the optimal
control of process (8.1) can be approached in several ways.

One involves determining the function
AU =9 8X (5] (i=12,...,p). (8.4)

In this case, corresponding to the state of the process AX(t)
at the instants of correction by (i =1, 2, ..., p), Eq. (8.4) is

brought into correspondence to the value of the correcting control.
However, this control algorithm (B8.4) can prove to be inadeguately
farsighted.

The second approach to forming the control actions consists
of using,the estimate of the mismatech vector of the phase coordi-
nates AX(t) at the instant of time corresponding to the next
instant of correction t = 1:i + 1" Then the control algorithm
becomes: '

BU() = ¢[AX (ta), 8] t=1,2,...,p). 5.5

And, finally, the control algorithm can,be constructed by
uslng the estimate of the mismatch vector AX(t) at the instant
of termination of the process, ¢t = T. We wlll have

MUY = o[AX(T)4) (1=1,2,....p). (8.6)

Thus, problems of optimal control of the process (8.1)
_examined above can be formulated as follows,_ .

Problem 8.1. For the process described by the system of
nonlinear stochastic equations (8.1) we must find the structure
and the parameters of control (8.4) providing a minimum value
for the quality criterion of the process (B8.3).



Problem 8.2. It 1s necessary, based on data of instantaneous
measurements of vector AX{(t) over the time interval between the
correcting impulses to predict the vector at the next instant of
correction t = ti + 1 for the process described by the system

of nonlinear stochastic equations (8.1), and to find the structure
and parameters of the control (8.5) providing a minimum value for
the quality criterion of process (8.3).

Problem §.3. It 1s necessary to make the prediction of the
terminal state of vector AX(T), for the process described by the
system of equations (8.1), based on the data of measurements of
vector AX(t)} over the interval between the correcting impulses,
and to filnd the struecture and parameters of control (8.6) on the
condition that themnumerical value of the quality eriterion (8.3)
is minimized.

To solve problems 8.2 and 8.3, we miist examine the algorithms /281
for predieting the future phase states of the process based on
instantaneous measurement data. Let us examine the solution of
the prediction problem,

8.2. Predicting Phase Cocordinates of Nonlinear Stochastlic Processes

Thls problem 1n predicting the future states of the motion of
flight vehicles in the dense atmospheric layers based on instantas
wneous wmeasursmentsdata is one of the problems of makiling estlmates
of random processes.

A fairly large number of studies /2, 18, 27, 48, 83, 100/
have dealt with estimates of random processes. One of the most
appreciable results in thils field was obtalned by Welner who set
forth the solution to the problem of filtrationaand outpacing for
the problem of statiocnary processes with optimal spectra. The
work of Weiner was followed by numerous generalizations (for example,
/5 /) in which the problem of obtalning an coptimal linear stationary
or nonstationary dynamic system for carpylng out smoothing, filtra-
tion, or outpacing of the stationary or nonstationary random
processes with finite or infinite observation time was examined.
In these studies the optimal system is described by the integral
Weiner-Hopf equation.

In papers by Kalman /27, 8;7 differential equations were
obtained for an optimal dynamle system. These results are related
with dynamic models of processes of flltration and outpacing of
random processes.

Lét us examine algorithms for predicting the future states
of stochastic processes described by nonlinear equations (8.1)
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Let us assume that in the interval of observation t i f)

of process (8.1}, several functions

Et (AXv t]: i (}&X, t)n sony Ty (A’YI t) (8a 7)

are measured.

Owing to the dependence of the solutlions to Egs. (8.1} on
fhe random vector of perturbations V and the initlal conditicns
ﬁXO that are random in the general case, the realizations of

functions (8.7) are random.

Suppose the law of the distribution of vector4\={F,AX@;composedi
of elements of vectors V and AXO is assigned and is defined by the
function (% hy.e)s Based on data of continuous measurements
(8.7) over the interval t [fi, 4], let us set up the problem of
determining an estimate of some function y{AX, tpred ﬁﬁfedictiog?)

computed for the elements of the mismatch vector AX at the instant
of time ¢ =‘tpred by treating the measurements with the relation

(see Fig. 8.1) .
~ I
VIAX, 4) = N @, (1) 0 (AX (=), D) dr,
fﬁé (8.8)

where ai(t) (i=1, 2, ..., 1) are determinate functions to be /282
determined.

Eg. (8.8) can be represented in the form

t o o
:?(tpred’;\_)=Ejaf_(-.)1“.(:\,:)d-., (8.9

i-=1F,

Since y(t A) and §(tpred,1\) are functions of random

pred?
vector A, the problem of determining the functions ai(t), (1 =

= 1, 2, ... 1) can be formulated as a problem of minimizing the
mathematical expectation of the square of the error in predicting
the state y(t A) by using Eq. (8.9)

B

pred?
) =y

f"’t)w= y(t

. A . -
pred’ oreas 7 (8.10)

Let us compute the criterion characterizing the precision of
the predictlon. We will have




[= M) = j‘s'-'(;\)fh(.-i)af‘\m
f y{t ng

4y pred?®’ - a; (=) 7 (A, )ci}f;(A)dﬁ, (8.11)

where G is a set of realizatlons of random factors A .

After uncomplicated transformations of Eg. (8.11), we get

ot
f=4 2 — - 4 A)+ 3] -
MU Coppeqr =25 [a () My (e ) as

I N 'f
+ 3 [ {a2 e (0) M (A =)0 (A, D] deds,
iS5, L (8.12)

Introducing the notation

R (% ) = M/ye (tpred, A/

b4 pred
Ryﬂi(tpred’ B = MLyt peqe ) N3(8,4)7,
7414 (6, 7) = M /n, (A, %) J.(A, T/,

let us write out Eq. (8.12) for the criterion of the estimate of
the quality of gprecision in the form
) dr -

1 #
f= R.\.(t E S i (1) Ryr (t

pred pred’

! i fs
+‘%“ \ \a,(i)uj( )R,, (£, <) it .

i, 1_1 :; fl

(8.13)

Let us find the necessary conditions for an extremum of the /283
quality criterion (8.13). To do this, let us represent the desired
functions ai(t), (1 =1, 2, ..., 1) in the form

. ﬂ:’(t)_m &!(t) 'é—‘{ihaf (!) {I i 112: *"vt)_z . e e . (8";':”)

where ¥; are constant cofactors and xﬁai(t) are arbitrary functions

not identically equal to zerc on the interval {£[f, k] and satis fying
the following conditlons:

A () = da;{t) =0 (i=1,2,....]).
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Substituting Eqs. (8.14) into the right-~hand side of Eg.

we can easily obtain from the condltion

L

the necessary conditions for determining functions ai(t),

(8.133,

(1 = 1.

2, ..., 1) that are optimal in the sense of criterion (8.13),
the form of a system of linear integral Fredholm equations of the

first kind:

. L 1y
Ry, (t =‘§‘§ t)R”(tr}dt (r=12...,10).

1=

pred’

(8.15)

We can easily show that conditions (8.15) are also sufficient

conditions for a minimum for criterion (8.13).

Considering the fact that the functions (8.7) and the function
y(tpred} measured for the nonlinear process (8.1) are in the general

case uncentered random functions with mathematical expectations

o d)m, (0),. . m, (4) and my(t ) and correlation functions K

pred Ry
t) (1 = 1, 2, cees 1), we

(1, J =1, 2, 3, va., M), K!'xi(tpred’

{t, =i

can rewrite the system of integral eguations (8.15) in the form

Koy (6 peqr ©) +my (B g)me(t)=

o2

=E Ya:( ) Ko (8,5 + My () m (D] de (j=1,2,...,0)

-~

4

or
”y(tpredjj%(oryﬁ (tpred’ t) + my(tpred)ﬂhﬂt)z
s . ' fe .
= _g § @5 [y (8) 30, () P (£,%)
feel £y
,‘j(!)m,, {< )} de (oo ,2 000,
T nere fww(ifi are normalized correlation functions.

Let us look at several particular cases.

(8.16}

(8.17)

/284
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1. 3Buppose

Ky =Ko, 20 (Lp=1.2,....0),

then Egs. (8.17) become

jm .

I
y(tpmd f“?rja”m (7) d=. (8.18)
2. Suppose my(tpred) = mw(ﬂﬁaﬂ, (f=1,2...., D, then Egs. (8.17)
become: '
7, (t pred)’WW(tt)_ % jaJ)ﬂr()r, (L) d= (j=1,2...,0. (8.19)

4‘%:1 Y

Obviously, Eq. (8.18) does not enable us to find the desired
functions (t) Egs. (8.19) enable us to solve the problem of

determlning the functions a {t); here the absence of a correlational
reciprocity between the measured functions ni(t), (1 =1, 2, .., l)

enables us to obtaln the system of independent integral Fredholm
equatlons of the first kind for determining each of the desired
funetions Ei(t); (i =1, 2, ..., 1) separately:

gy (t Fyo; (%

pred’

& ‘
pred) 8= § a6 o, (e, (1,5) .

If the measurements (8.7) are made with the error
By (£), Ena (2), <00, 39 (£)

and the latter is determined by two of the commcnest cases:

(€)= 7, (£) + B, (8),
() =) (1 +8n () (=12 ...,0,

then the integral cquations (8.15) can be written in the form:

o R . v e e o B RN

Ry (E g , =3 [5,0)] re~-(f -}+Rw (¢, ds G=1,2,...,0),

by
i
Tu=l ) !

- ‘ - -
E}%(tpred, K fa ()R—~(t ?) |1+ %ﬁ%(afﬂdzgf=1,g__ulh

::r\
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if the real instantaneous values of n:{i} are not correlated with
a measurement error of dmi{f). '

Using Egqs. (8.13) and (8.15), let us write out a formula for /285
computing the criterion of the estimate of the effectiveness of

predicting the function y(tpred) employing Eq. (8.8):

LY

!
= B . -} d. .
I Ry(tpred - &) a, (%) Ry ,(t red? =} (8.20)

Eq. (8.20) enables us to estimate the error of prediction and
to make a conclusion of the possiblllty of employing the prediction
algorithm.

Of interest is an examination of the algeorithm for the non-

linear treatment of observation results. To derive the working
relations, it is sufficient to assume that

n(BX, ) =z (), %(AX, 1) =2 (t), ..., 7 (8X,§) =2 (8),

where z(t) is the observation function.

Then with reference to Eq. {8.15) we will have the following
system of linear integral Fredholm equations of the first kind

i i,__ .
Miy(tpred)zf(t)]=§jai(t)1W{zf(t)z‘(:)]d: G=12..10. (8.21)

In predicting the function y(t ) based on one observation

pred
funetion, we obtain a linear Fredholm equation of the first kind
. N
Ry, (tpmd, t)=’ja{-.)R,m(f., t) d=. (8.22)

Above we examined the problem of predicting process states
based on data of instantaneous measurements in a falrly general
case, namely: 1Iin the absence of any assumptions on the process
AX(t). In particular cases, the integral equations (8.15) can
he gon51derably 51mplified

A fair number of studies /19, 32 60/ deal with methods of
sclving the resulting linear integral equations of the Fredholm
type (8.15). If R, (&% 1n Eq. (8.22) is a symmetriec quadratically-

summable positive-determinate kernel and if Eq. (8.22) is solvable,
for its solution we can employ the method of successive approximations.

283 .




284

We can also use the Fredholm equations in. /32/ and convert from
integral equation (8.22) to a system of algebraic equations. To
do thls, we must subdivide the interval (tl, t2) into n equal

intervals having the length

o —t,
and we must set: /286
R, (G+p3 L+ ad) =R (pa=12...n),
. o s
R}"’: (tpr'ed, t1+PAt) - [‘)‘;-,.‘ (p - lr ey orrous ”)n
a(t,+gAx)=a% (g=12,...,0)
‘
Substituting for the integral ¢ ()R (f,)d=, when t = tl +p t,
the sum J '
n" 4 p —
;Z Reiqtdc (p=1,2, ... 1),
q[ -
we get In place of integral equation (8.22) a system of linear
algebraic equations
n
' Y Rriqid~ = Rp =192 ... 10\ .
% ™ ¥y (P * ’”) (8“23)

If the determinant [R|, composed of the elements RJ, 1is
not equal to zero, the system of equations (8.23) has a unigue

solution for any values of RO,(p =1, 2, ..., n) not identically

equal to zero. By virtue of the fact that R, {4 )<R (>0 and
the symmetry cf the function Ru(tf) s the determinant is not
always equal to zero and the solution of the integral equation

does exist. However, by virtue of the arbitrariness of the random

process AX(t) and the approximate computation of the statistical
characteristics of the nonlinear process (8.1), when solving the
integral equation we can encounter the poor causality of matrix

(R%). Employing the methods of solving systems of linear algebraic

equations; we can find the desired solutions -- the function a(t)
specified at discrete points.




We can also proceed aﬁalogously with the problem of solving
the system of integral equations (8.15). In this case we will be
dealing with the matrix '

o (67) ol Ry (4,7)

R"-;'"-‘s (f’ .:) 'Rfla'l
D = Ruipg (£,70) Rer (£,7) oo Ruz (4,7)
RT ’ (f, T‘) R"e"'l (ti ?') v R"i[’.’; (to T)

)

and with the vectors A*{) =(a:()a{l) ... (D)),

% i4Y = . . " ;
B* (¢) (R’“(tpred’ t) Ry, (tpred’ t)"‘R”1(tpred’ t)),
enabling us to write out the integral equation (8.15) in matrical
form

5(t

prear B)= DA, (8.21)
4

Subdividing, as before, the interval i?l, t?;7 into n equal /287

parts and carrylng out transformations analogous to those examined
above for the one-dimensional case, we get the matrix (DPQ) of

of order (n, n), whose elements will be square matrices DP4 of
order (1, 1), whose inversion then gives the desired solution.
However, in the multidimensional case of the integral equation
(8.24), considerable difficulties_can arise in the inversion of
matrices of order gfh, 1}, {(n, 1)/ when there are large values

of n and 1. In addition, we can alsc observe phenomena of the
poor causality of matrix (DP9) owing to the presence of a funetional
relation between the cross sections of individual measurement
functions. Therefore in setting up the problem of prediction we
must take account of the specific features of the process under
study, and when there is poor causality of matrices we must modify
elther the observation interval or we must reject measurements not
enabling us to predict the future states of the process.

When examining the problem of predicting y(tbred) based on

data of observation of the functions ni(t), 1t was assumed that
the functilons ni(t) include errors of measurement 6ni(t), whose

filtration was not carried out during the measurement. In principle

we can set up and solve the problem of prediction for the case when

the filtration-is carried out in advance for the observation-fune=———-
tions ni(t) and carry out the prediction of y(tpred) based on the

output signals of the filter fi(t). All working formulas here

remain asg before, and only the procedure of computing the statistieal
characteristics of the observation functilons required for prediction




will change. Let us examine this process more closely in crder to
find cut in what relation we will consider the problems of Tiltra-
tion and vrediction. Using the dynamic model of filtration and
prediction shown in Fig. 8.2, let us wrlte out ths quallty critericen
for estimating the precision of prediction, here considering that

/4
T8 = {w 4,7y v (v) a,

[

1= Ry(tpred) 2\1 ‘ai( )Rv.f (tpred’ﬂdﬂ'"*'
R
Gty

'
+ ? fjaj( )az( )Rfif (¢, —)dt d,

1j-—lt,!1. (8.25}
Since
L= M (e, - W dh] == ;wﬂe DR i)y dh
yf (tpred’ ) K [)’ (tpred) b“ﬁ’l(’t! )v!( )d ] 1}3 I( 9))R."‘£ (tpl"ed’ ’}(1’!’
t =
f\)_[i;j[f,'t) - é‘é‘wj(t’ Ay w; (. h) Rvivf(a,}.)rl?afi).,
then we will have /288
! r? < ) .
I = Ry(tpred) *-‘QEJ J a; (=) @; (= #) Ry, (tpred’ rydidt 4+
t fhts t s
jj‘jai(f)a}( Y, (£, 8)awy (5, 1) Rup (3, 2) de d db b, __
i, j—-lr, H 00 .
(8.26)

From the condition that criterion (8.26) is a minimum, we find
the re%u%red optimality conditions for finding functions LA (t, T)
and a,(t

Introducing into consideration the functions

e e = e . ) - - — e . — - B R

wg(t )wfv(z—’ )+ﬂfd*" (¢, r)

@ t) =&, (8) + gda; () {i=1,2,...,10)
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and substituting them into criterion (8.26),

a1

= =0

d‘pk - Sad q&‘mﬂ !
al '
G =0 (&= “e
qu Ppy=ay=0 ( I*Q‘ ’!}

we obtain the following relations:

&

g =0 j !A'&’k(‘w "-)[“A‘) {Rw(tpr’ed’ 0,

from the conditions

YL
[EAGR

i

Xw (L DR, ¢, ) dadz” dt =0 (k=1,2,...,0)

o . 1 - "':‘..' . .
oy =0 Aa,@(-)[(’ju(-,}-){%( tored »

XEHR,, G, }.)dadt”dkdt 0 (k=1,2,.

j'a (t)tu W

B

4,

whence it follows that the necessary conditions coincide and are

of the form

IR

R, (t
Tk i=14

- f '
pred’ =¥ j"’"’"(é w, (¢, a);evkvj(a, )‘)dr})dt (£=1,2,... 10}

The foregoing shows that on the condition that criterion
(8.26) is a minimum, we were unable to obtain the conditions
necessary for finding elther the optimal impulse transfer function

idh'T) and the weighting function of the predicting deviece ai{f).

Introducing the notation

i
b (£,0) = 54 (LHR, (a, 1) ds,
L]

let us rewrite condition (8.27) in the form

‘ L
___R.m,,_(tprred, = 3 [ aern, (0 dt (k=12

Ee 18,

Comparing conditions (8.15) and (8.29), we can note that they
are eguivalent in form. Essentlally, the very conditions (8.29)
enable us to find the solution of the problem formulated only

(8.27)

(8.29)
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given the condition that we have the known impulse transfer function
Wj(t= 7.) of the dynamical system enabling us to fiitrate the signal

measured. In the cne-dimenslional case we will have

[
Bt W) = [w (DR, (1) ds, (8.30)
0

f

preda’ M= j’aa(f):»(t, 1) dt. (8.31)

Rw(t
We can easily see that conditions (8.30) essentially are
Weiner conditions, that 1s, the condition of the optimal filtration
of the signal measured, therefore in the one-dimensional case the
separate sclution of the sequence of problems in optimal filtration
and prediction of the states of the random process ensure an optimal
value of the quality criterion (8.26), since

wf, A) = R’.v(f, AR

Thus, Eqg. (8.31) is of the form

[}

Ry-.=(t )= ji’a(t)Rﬁ(‘t,:’.)dt. ' (8.32)

.
pred’

Comparing Egs. (8.15) and (8.32), we can note that essentially
they differ in the correlation in the right-hand side of R, (= 1)

and R,{s,+), which naturally is important from the standpoint of
solving the prediction problem.

Above we examined the algorithm of the continuous treatment
of observation functions for the purpose of gsolving the problem of
predicting the future states. The operating scheme of the predic-
tion device is glven in Figs. 8.1 and 8.2.

When digital computers are used for sblving the problem of
predicting the future states of a process, the observation functions

ni(t) willl be measured at the discrete points L IR t, /290

with an interval At:

oo U A {20, (A (),
e (tl - At), T (f -{ 2‘;5)‘1 ceey el 'E",fi\f.}- ey s (t'.'}»
7'14' (f’ 3] A?)ﬁ 7({ (’f 'f‘ 2‘3’]7 Tty Th’ (!I _'1._ j'}g}r ey K (f-”
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Fig. 8.1. Scheme for the prediction of phase
coordinates at a given instant of time

0[ L

.a(till,

Fig. 8.2. Scheme of predicting phase coordinates
at a given instant of time with smoothing of
measured slgnals

and the problem of constructing the prediection algorithm reduces
to the realization of the algorithm

i

4
) = E E a;;7; (£q -+ jAL). {8.33)

v (t
y( pred A

To determine the coefficients aij’ let us introduce the
vector A composed of elements aij of the form

AF = (@l . . .QpQupttan. g,

and let us arrange the measurements of the observation funetions /291
in a vector-row of the form T

e e

0% = (13 ()0 (A8) .. .1y (M) 70 (288). 7 (1))




Then Eq. (8.33) can be represented in the form

ny
Y= ¥ qap, N=1xn,
Py’

y(tpred

Formuilating the criterion for the estimate of the precision
of prediction, in the form

§ N .
I= {1y A)y— T ¢ (A A)dA
Q{l (tpred’ = (Ve | fi(A)dA,
we obtaln a system of linear algebraic équations for determining
the coefficients

| N
¢ | = a;M | (r=12...
Miy(e . q) o1 & aMlac] (r=1.2,.., ). (8.34)

The expressions M /y(t ) cr;7 and M{ce,] in the system of

pred
equations (8.34) denote M Zf(tpred)mffdﬂ] and ﬂf[m(jﬁﬂkaAﬂJ

for v,6 =1, 2, .q., £; 1, j =1, 2, o.., N.

In practical problems, £ and n can be fairly large numbers,
therefore in several cases it appears expedient to formulate the
coefficients ai(t) by using some system of specified functions

¢1(8), 22 (£),. .., 92 (£),

then we will have

M,
@)= ¥ a6 i=1,2,...,10).
e (8.35)

Substituting Eq. (8.35) into the eqguation fdr the quality
eriterion (8.13), we get . |
f

i . J"jf\
I =R (¢t )‘v-QE E' Ealk?k(T)RJ’m (t

'r.]dr-l-
y pred fe=lf, Bl

pred’

4ot

M, ‘
S ffan@eg ORg G d=

$ ¥ & 8 L,

— 9 aor, L 4

)2 auti NNy, W (8.36)
I ) i iR o pol



- where we use the notation lrde

L

“= ,5 Ro Pprea? ACEAE
' \I
= [ f ()5, (R, (2,7 dudt. (8.37)
fof ]
From the condition i%f=0 , we get the system of algebraic

equations for dstermining the desired coefficients ayy !

iMoo '
S 3 wila,me =126 k=12 M), (8.38)

J=1p=1

This procedure enables us to avoid the need to obtaln a system
of integral Fredholm equaticns of the first kind that have con-
siderable inconveniences in its solution, however the convergence
of the solution to the optimagl value for a small number IVI:L is

difficult to ensure, although as M, - « the solutions (8.38) -
tend to gi(t). '

For i = 1, the system of eguations becomes

A, )
N w aﬁW@W=LZ“HMd

T
p=1

The mathematical expectations M[y(t In.(£)] and M[n, (&)
i(T)] necessar¥ for carrying out the coﬁpug ons . and the1
elements Wcr’ w ¢can pe - computed by processing the sequences

(l) 4(2) (N)
y(tl()i?ds ): y(tpr?d; - )J b | y(tPI’Edz A ):
2 N)
M (topear A7) ;(tpred, Ys woes nq? (tppeqs A7)
i (1 =1, 2, «.., f)s ! oo (8.39)

obtained by integrating the system of differential equation (8.1)
for the sequence of the random vector

. . ;
Awrgitr“,Af?. o . o (8.80)

using the digital computer, Difficulbies associated with computing
the coefficilents wér and wi based on Egs. (8.37) can be overcome

to a large extent if these coordinates are represented in the form



) I

wi = M|zly (T

pred
1) = M[2z]],
Yop (3]
where
a
Ty = ‘ )z, (8u e, (8.41)
L ‘
Realization (8.41) can be easily computed on a digital /293

computer by modeling the process (§.1), if -the initial system of
equations 1s supplemented with a system of differential equabtions

zhe=n(f)ee(f), EC [ 6] G=1,2,..., L k=12,..., &)
For the reméinder, the treatment of the seguences

20 (AD), 240 (A®),..., 20 (A,

computed for the sequences (8.“0) can be carried out by using
recursion relations of the method of statistical ftests.

In solving the problem of constructing the prediction algo-
rithm, we used a priori Information on perturbing actlons causing
the observed process to deviate from the reference process. The
control procesg does not provide for the accumulation of information
on the perturbing actions and adaptatlion of the resulting algorithm.

Use of prediction results in accordance with problems 8.2 and
8.3, for optimal control of a process, requires that we know the
effectlveness of the control actions applied at the instants of
correction tl, t2, coay tp for the phase states of the process at

subsequent instants of correctibn and at the terminal state of
the system.

8.3. Determination of the Effectiveness of Control Actions on
the State of the Process

In formulating the optimal control AL, AU,,..., AU, , we must

- —determine-the state of the process that is caused by -the given
control, that 1s, we must know the structure and parameters of
the state of the system under study as a function of the controls
aly
AX (r) = AJY (A!j;. &{1’3,. . -,ljl)'zpc T)
(8.42)
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[
Oor the state of the system at the next instant of correction

AX(t,H),—_AX(a.U‘., gt e : (8.143)
Since the controls AUi are applied to system (8.1) discon-

tinuocusly at the instant of time ti and remain constant over the

interval ¢ <[4, 4, ], determining the structure of functions (8.42)

or (8.143) can be associated elther with representing the latter
with the Taylor serles

. b
AX(T) = AX (T, 8U, = 0) + X i”_fﬁl AU, +
oo 1 0

4 33T teo (8.44)
. Ix (t,
AN (ti*i‘lJ = AX(“:‘-H* Ay, = ‘“—0".(1%’;"1! L'\Ua +.. (8.4
-45)
or with the approximation AX(T) and zﬁX(ti) by several poly- /294
nomials:
) _
AX(T) = ay+ N a U, 4. ..
) O+;'ﬁf’|a' [ LT (8.46)
.'lX(tHIJ-m—vai."{-a,.AUl.—{—....
(8.47)

To construct series (8.44) and (8.45), it is necessary to
compute for the reference motion of process (8.1) sensitivity
functions of the first, second, and higher orders of the vechor
AX for the control actions.

Using senslitivity equations usually involves considerable
preliminary work in determining differential sensitivity equations.
First-order partial derivatives can be computed when there is a
linear model of the process (8.1)

AN = A(HAX + B(HAU,

under study 1s available if the integral of convolution is used:

!
AX, () = f @ (¢, ) B (x) AU, (x) d=.
1]

Sinece AU,=const over the interval-té{g,g+”L then we will have
fray
DX : .
oalr, (f!“) = 5. W, {tigii t}B(T)d’f-
1
0AX T
g, (M = [T 0B d- (8.48)
i

i
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For calculatlons based on Eqs. {(8.48), it 1s necessary first
to compute the cross sections w(ti, t), w(T, t) of the impulse

transfer function w(t, 7) by the linecar model (AX=AAX} at different

instants of time tl’ t2""" tp, T.
In principle, both these approaches can be successfully used
in solving the problem formulated, however they are marked by one
common disadvantage, associated with considerable preliminary work
in linearizing the system of nonlinear differential equations (8.1).
One should note an additicnal circumstance that often is not gliven
appropriate attention in constructing the control for nonlinear
processes. When reference trajectories are computed often eguations
(8.1) are integrated under the condition that all the random
components of the perturbing factors are equal to zerc, that is,
the system of equations ' )

%)= LKy Koveer Xy [M 2], L, M), U (1),
.q(%)=zwlxhd (E=1,2,..., %)
(8.49)
is investigated.

_ We denote solutions to the system of equations (8.49) by /295
xi(t) (1 =31, 2, ..., n). Let us denote the mathematical expec-

pectations of the solutions to system of equations (8.1) by
) =M1, (i=1,2 ..., n). Obviously, the difference of the resulting

solutlon _ _
Ay (£) =x (£)--x,(f) (i=1,2,....n)
t | (8.50)
is not equal to zero in the general case.

Control of the process (8.1) in order to reduce the mismatches

Axdﬁ‘f)=J%U=V)—=%(0==A£(ﬂ-+3kdt‘/)(i=1,l-u.ﬂ) (8.51)

to zero involves compensating both the systematic error Axi{f),
as well as the random compcnent of the mismatches, which naturally

--oghn- Tead to considerable deviations of the control getions from

the reference values and to considerable deviations of the instanta-
neous states of the procesg from the reference states when there
are constraints on the control actions.



To compensate the statistical error of mismatches Axvi(f. it

1ls cbvious that we must find the mathematical expectations of the
correcting impulses ;ﬁUi S0 as to ensure Ay (f)=-0, or to consider

as programming motions the phase states Ei(t}, whiech in general

gives the same effect, and namely there 1z a replacement of the
reference motion with respect to phase cocrdlnates xi(t) by the

rhase coordinates Qi(t) (1 =1, 2, ..., n). The latter means

that linearization of the equations of motion (8.1) must be
conducted so that the elements of the matrices of the linear
model of the process

EL_VQWNM+VQMQ+V6V

J‘ j»=~1 Jwi

(8.52)

are computed for the reference trajectory characterized by the

state xi(t) (i =1, 2, ..., n), that is,
= 9 oy _ R . o
= Jx; A X'/ R R o e )

¥ — .
Fhy, =y (1) ¥y == ih ¥y (0

From the computational point of view, this means that in order
to obtain the phase coordinates x (t) it 1s necessary to investi-

gate the nonlinear perturbed system of equations (8.1) by one of
the methods of analyzing the scatter of nonlinear stochastie
systems for determining the solutions xi(t), and then to linearize

the nonlinear equations.
Use of sensitivity equations also presupposes the parametric /296

linearlzation of nonlinear stochastic equations (8.1) relative to
the solutions xi(t):

éikzzaifsz'f'bék(t) (f'_f= L2,....m, ' (8.53)
where
dt _dfj

[ & .!"

o
bu dazjkl =
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Therefore to compute the effectiveness of control actions by means
of the system of linearized equations (8.52) or the sensitivity .
models (8.53) reqguires considerable preliminary work in determining
the solutions xi(t) and in linearilzing nonlinear equations (8.1)

with respect to the solutions found.

Accordingly, 1t appears possible to indicate a less laborious
algorithm of computing the effectiveness of control actions by
employing the above-described method of stochastic approximation.

Using the working formulas obtained in Chapter Six and
computing the elements of vector 2 with one of the methods of
investigating nonlinear systems, we obtain the structure of the
function AX with respect to the control parameters. As a whole,
the computational procedure consists of the following.

We introduce the vector of random parameters p=({4U,, AU,...,:
AU;) 3 we determine the range of the variation in the control

parameters; and we assume that they are random with a normal or
uniform distributlion and that there is no correlation between the
elements of the vector u. Then we determine the statlstical
characteristics of vector ¢ based on a knowledge of the range of
variation of the controls. We econstruct a random seqguence of
vectors

I"(”- ll-m,-—-.PW) (8. 511[)

r

and for each of 1ts elements, by solving the system of differential
equations (8.1) for the vector A=0{(V=0, AX,=0) , we construct

a sequence of vectors AX(h), AX(f),..., AX(ty), AX(T) , for example

AXY Ty, AX® (7‘)7. oy AX (T, | (8.55)

Treatment of the sequences (8.54) and (8.55) enables us to
compute the elements of the vector z¢- M[ax(7)ayf], and this means,

the desired repgression coefficients.

Naturally, when the functions le(ti) are approximated by /297 -

polynomials, the question of the degree of the approximating

polynomial arises. This question can be answered by computing - B
successively regression coefficients for two neighboring degrees

of polynomials or from an analysis of the error of approximation.




Let us examine successively the solution to problems 8.1-8.3
formulated in Sectlon 8.1. 1In problem 8.1 there is no problem of
predleting future states, however 1t gquite closely borders in
structure of control algorithm problems 8.2 and 8.3 and its
solution can be of interest from the standpoint of clarifying
the advantages of optimal control with prediction of phase states.

Since seeking for the structure of the function ¢(AX) by
‘using analytic methods of synthesis is a problem that is guite
laborious and unresolvable in practice, the solution (8.4) is
usually sought for in the class of specified functions by using
the representation of the function ¢{AX) employing series of
the form

SIAX (6] = &0+ S Ex (£) +. ..
‘ ,-%. P (8.56)

whose coeffilcients are selected from the condition of ensuring
that the quality criterion (8.3) has a minimum.

By intreducing the one~dimensional vector q composed of the
coefficients &, &, &Y, ... (i=1,2, e v =12, .. ) and by
substituting Egs. (8.4) and (8.50) intc system of equations (8.1),
we get

*{'1 = fi{X Xoye ooy Koo U1y Ty e oy U
‘Tn q'.‘y' LRE] q&')!

X (8 = X0+ Ak, (E=1,2..0.
(8.57)

Thus, the control process is described by the system of non-
linear differential equations (8.57), the right-hand sides of which
contaln the unknown parameters of the control algorithm. The
numerical values of these parameters usually are found by solving
the subsequent problem.

Problem §.4. For the process descrlbed by the system of
nonlinear stochastic equations (8.57), it is necessary to determine
the parameters of control X on the condition that the quality cri-
terion (8.3) is provided with a minimum value.

Problem 8.4 belongs to the class of problems of searching for
an extremum of an implicit funetien of many variables and can be
solved by one of the 1lterative methods of searching for an extremun
discussed earliier, Here a good initial approximation for elements
of the vector g 0) to a considerable extent determines the conver-
gence of the iterative methoeds of searching for an extremum of

R97
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criterion (8.3) and the volume of computations involved in opti- /298 .
mizing it. Let us indicate therefore one of the possible (0)
procedures in selecting the initial approximation of vector g

for problems in control of the terminal state of process (8. l)

In problems of terminal control, usually the condition of
ensuring at the final instant of time of operation of the system
some set of conditions

ALﬁ=LAAnfn——Q(§(m)=(l(i:l,z._,ﬂ. (8.58)
is set up.

Let us exXpand the functionsALi in a Tayler series in
elements of the vector AX: '

»

0 .
.‘.L———E dii -\l +LH1+ (i=12,...,v.
Je=1

(8.59)

If the number of conditions (8.58) is equal to the number of
elements of the vector AU, that is, p =V, the coefficients of
the Taylor series (8.61) computed for the reference motion at the
correction instants of time can be taken as the zero approximation
of the vector g with reference to the effectiveness of the control
in the i-th instant of correction.

The problem of controlling the descent of a flight vehicle
into the earth's atmosphere in the longitudinal and lateral planes
by means of two controls -- the control of the angle of attack and
the control of the slip angle —-- can serve as an eXample.

If the problem of controlling the flight vehicle i1s to ensure
that 1t lands at a specified point on the earth's surface, then
naturally it is required to satisfy the two conditions

L= LX) =L (%) =0,
ALy = L.(x () — L, {X) =0,

where L1 and-L2 are the characteristics of the longitudinal and
lateral motion of the flight vehicle.

By determining the~expansionnof-the~functionsA1&L1 and zﬁLz'“J““~—-
in a Taylor seriles for the i~th control instants
AL = ALL, + “%“’“'1 R
Je1
\(}rlf . K
..\L w.}! o f; )kJ !f Aa‘-.j”-';“..,. (8.60) |

i




and consldering the effectiveness of the control (let us assume
that it is determined by a linear regression) '

AT 1) = Clrdal s,

1
7t Py t i b
MaAT, §) = C,;;,AM} ' -+ ';452:115,( !

from the conditions /299
‘AL_Y} b AE{” (,7.? t!) = 0!
ALY — ALY (T, 1) =0
we can obtaln a control algorithm of the form
? i ! i
oAt —cl, arl
Au}" — aL~H1 . AL, ,
Al = T TnSk - Gl AL | (8.61)
A A

wWhere

N T
A= C.\L‘TAL; - Ci’-;ﬁ\;n'

Substituting into Egs. (8.61) Egs. (8.60), we get the controls

in the form

t i i i (] { ol
AL]  — L, AL: g = B .
Anﬁ” Tar2E1n " aLSton ! YR . AL, AN 4

iy, —bb'Ct

+AX* AKX L

! ] i
— i Mig+ Cip oLl + — A L
a3

At
-‘iuj = 3

;le +

+AXE AX ...,

—1hg i+ CLp
A

. __..wWhere. .. _._ e e e R

(8.62)
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From the équality of Egs. *(8.56) and (8.6%3 we get the zero
approximation for the vector of coefficlents g ).

For the remainder, the solutlon to problem 8.4 is carried out
by employing algorithms for the statistical optimizatlion of the
dynamic systems.

We can simllarly s=solve problems of constructing the control
for problems 8.2 and 8.3; here in the expansions of the control
functions (8.56) we must use the values of the vector AX(%)
obtained by prediction based on data of instantaneous measurements.
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